924 research outputs found

    Gender and the Outdoors: An International Conversation

    Get PDF
    Over the past two to three decades in outdoor education circles, there has been a gradual swell of interest in bringing a gender lens to the examination of issues, theory and practice within the field. Although feminist theory has been subjected to lively debate and undergone sophisticated shifts in the ways of conceptualizing and analyzing gender, much of the literature coming out of the outdoor field and much of our practice is still centered on women and difference. As Bell (1997) so clearly asked, “Has the dialogue on the nature of gender and associated social issues not changed in the past decade?” A group of international researchers, educators and practitioners discussed gender theory and practice in their “neck of the woods” and challenged attendees to ask that question again today

    Pediatric low-grade glioma models: advances and ongoing challenges

    Get PDF
    Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas

    Thermal Conductivity and Specific Heat of the Spin-Ice Compound Dy2_2Ti2_2O7_7: Experimental Evidence for Monopole Heat Transport

    Full text link
    Elementary excitations in the spin-ice compound Dy2_2Ti2_2O7_7 can be described as magnetic monopoles propagating independently within the pyrochlore lattice formed by magnetic Dy ions. We studied the magnetic-field dependence of the thermal conductivity {\kappa}(B) for B || [001] and observe clear evidence for magnetic heat transport originating from the monopole excitations. The magnetic contribution {\kappa}_{mag} is strongly field-dependent and correlates with the magnetization M(B). The diffusion coefficient obtained from the ratio of {\kappa}_{mag} and the magnetic specific heat is strongly enhanced below 1 K indicating a high mobility of the monopole excitations in the spin-ice state.Comment: 5 pages, 4 figure

    μ-Carbonato-bis­(bis­{2-[(diethyl­amino)­meth­yl]phen­yl}bis­muth(III))

    Get PDF
    The mol­ecular structure of the title compound, [Bi2(C11H16N)4(CO3)], consists of a symmetrically bridging carbonato group which binds two [2-Et2NCH2C6H4]2Bi units that are crystallographically related via a twofold rotation axis bis­ecting the carbonate group. The two Bi atoms and two of the C atoms directly bonded to bis­muth are quasi-planar [deviations of 0.323 (1) and 0.330 (9)Å for the Bi and C atoms, respectively] with the carbonate group. The remaining two ligands are in a trans arrangement relative to the quasi-planar (CBi)2CO3 system. The metal atom is strongly coordinated by the N atom of one pendant arm [Bi—N = 2.739 (6) Å], almost trans to the O atom, while the N atom of the other pendant arm exhibits a weaker intra­molecular inter­action [Bi⋯N = 3.659 (7) Å] almost trans to a C atom. If both these intra­molecular N→Bi inter­actions per metal atom are considered, the overall coordination geometry at bis­muth becomes distorted square-pyramidal [(C,N)2BiO cores] and the compound can be described as a hypervalent 12-Bi-5 species. Additional quite short intra­molecular Bi⋯O inter­actions are also present [3.796 (8)–4.020 (9) Å]. Inter­molecular associations through weak η6⋯Bi inter­actions [Bi⋯centroid of benzene ring = 3.659 (1) Å] lead to a ribbon-like supra­molecular association

    Quantum Criticality of an Ising-like Spin-1/2 Antiferromagnetic Chain in Transverse Magnetic Field

    Get PDF
    We report on magnetization, sound velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo2_2V2_2O8_8 as a function of temperature down to 1.3 K and applied transverse magnetic field up to 60 T. While across the N\'{e}el temperature of TN5T_N\sim5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v(B)v(B) and a clear minimum of temperature T(B)T(B) at Bc,3D=21.4B^{c,3D}_\perp=21.4 T, indicating the suppression of the antiferromagnetic order. At higher fields, the T(B)T(B) curve shows a broad minimum at Bc=40B^c_\perp = 40 T, accompanied by a broad minimum in the sound velocity and a saturation-like magnetization. These features signal a quantum phase transition which is further characterized by the divergent behavior of the Gr\"{u}neisen parameter ΓB(BBc)1\Gamma_B \propto (B-B^{c}_\perp)^{-1}. By contrast, around the critical field, the Gr\"{u}neisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.Comment: Phys. Rev. Lett., to appea

    High power and spectral purity continuous-wave photonic THz source tunable from 1 to 4.5 THz for nonlinear molecular spectroscopy

    Get PDF
    We report a diffraction-limited photonic terahertz (THz) source with linewidth \u3c 10 MHz that can be used for nonlinear THz studies in the continuous wave (CW) regime with uninterrupted tunability in a broad range of THz frequencies. THz output is produced in orientation-patterned (OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near lambda = 2 mu m. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 mu m was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved \u3e 25 mu W of single-frequency tunable CW THz output power scalable to \u3e 1 mW with proper choice of pump laser wavelength

    4-Benzyl­piperazin-1-ium chloride chloro­form solvate

    Get PDF
    The ions of the title chloro­form-solvated salt, C11H17N2 +·Cl−·CHCl3, are linked by a strong N—H⋯Cl hydrogen bond; the solvent mol­ecule also inter­acts with the chloride ion through a C—H⋯Cl hydrogen bond. Additionally, neighboring cations form weak hydrogen bonds to the anion, resulting in a supra­molecular ribbon that runs along the a axis
    corecore