1,714 research outputs found
Scattering of Pruppacher-Pitter raindrops at 30 GHz
Optimum design of modern ground-satellite communication systems requires the knowledge of rain-induced differential attenuation, differential phase shift, and cross polarization factors. Different available analytical techniques for raindrop scattering problems were assessed. These include: (1) geometrical theory of diffraction; (2) method of moment; (3) perturbation method; (4) point matching methods; (5) extended boundary condition method; and (6) global-local finite element method. The advantages and disadvantages of each are listed. The extended boundary condition method, which was determined to yield the most scattering results, is summarized. The scattered fields for Pruppacher-Pitter raindrops with sizes ranging from 0.5 mm to 3.5 mm at 20 C and at 30 GHz for several incidence angles are tabulated
Reflective Ghost Imaging through Turbulence
Recent work has indicated that ghost imaging may have applications in
standoff sensing. However, most theoretical work has addressed
transmission-based ghost imaging. To be a viable remote-sensing system, the
ghost imager needs to image rough-surfaced targets in reflection through long,
turbulent optical paths. We develop, within a Gaussian-state framework,
expressions for the spatial resolution, image contrast, and signal-to-noise
ratio of such a system. We consider rough-surfaced targets that create fully
developed speckle in their returns, and Kolmogorov-spectrum turbulence that is
uniformly distributed along all propagation paths. We address both classical
and nonclassical optical sources, as well as a computational ghost imager.Comment: 13 pages, 3 figure
Classical Rotons in Cold Atomic Traps
We predict the emergence of a roton minimum in the dispersion relation of
elementary excitations in cold atomic gases in the presence of diffusive light.
In large magneto-topical traps, multiple-scattering of light is responsible for
the collective behavior of the system, which is associated to an effective
Coulomb-like interaction between the atoms. In optically thick clouds, the
re-scattered light undergoes diffusive propagation, which is responsible for a
stochastic short-range force acting on the atoms. We show that the dynamical
competition between these two forces results on a new polariton mode, which
exhibits a roton minimum. Making use of Feynman's formula for the static
structure factor, we show that the roton minimum is related to the appearance
of long-range order in the system.Comment: 5 pages, 3 figure
Polarization Sensitive Optical Coherence Tomography for Blood Glucose Monitoring in Human Subjects
A device based on Polarization sensitive optical coherence tomography is
developed to monitor blood glucose levels in human subjects. The device was
initially tested with tissue phantom. The measurements with human subjects for
various glucose concentration levels are found to be linearly dependent on the
degree of circular polarization obtainable from the PS-OCT.Comment: 12 pages, 5 figure
Electromagnetic effects of neutrinos in an electron gas
We study the electromagnetic properties of a system that consists of an
electron background and a neutrino gas that may be moving or at rest, as a
whole, relative to the background. The photon self-energy for this system is
characterized by the usual transverse and longitudinal polarization functions,
and two additional ones which are the focus of our calculations, that give rise
to birefringence and anisotropic effects in the photon dispersion relations.
Expressions for them are obtained, which depend on the neutrino number
densities and involve momentum integrals over the electron distribution
functions, and are valid for any value of the photon momentum and general
conditions of the electron gas. Those expressions are evaluated explicitly for
several special cases and approximations which are generally useful in
astrophysical and cosmological settings. Besides studying the photon dispersion
relations, we consider the macroscopic electrodynamic equations for this
system, which involve the standard dielectric and permeability constants plus
two additional ones related to the photon self-energy functions. As an
illustration, the equations are used to discuss the evolution of a magnetic
field perturbation in such a medium. This particular phenomena has also been
considered in a recent work by Semikoz and Sokoloff as a mechanism for the
generation of large-scale magnetic fields in the Early Universe as a
consequence of the neutrino-plasma interactions, and allows us to establish
contact with a specific application in a well defined context, with a broader
scope and from a very different point of view.Comment: Revtex 20 page
Earth-Like: An education & outreach tool for exploring the diversity of planets like our own
Earth-Like is an interactive website and twitter bot that allows users to
explore changes in the average global surface temperature of an Earth-like
planet due to variations in the surface oceans and emerged land coverage, rate
of volcanism (degassing), and the level of the received solar radiation. The
temperature is calculated using a simple carbon-silicate cycle model to change
the level of in the atmosphere based on the chosen parameters. The
model can achieve a temperature range exceeding C to C
by varying all three parameters, including freeze-thaw cycles for a planet with
our present-day volcanism rate and emerged land fraction situated at the outer
edge of the habitable zone. To increase engagement, the planet is visualised by
using a neural network to render an animated globe, based on the calculated
average surface temperature and chosen values for land fraction and volcanism.
The website and bot can be found at earthlike.world and on twitter as
@earthlikeworld. Initial feedback via a user survey suggested that Earth-Like
is effective at demonstrating that minor changes in planetary properties can
strongly impact the surface environment. The goal of the project is to increase
understanding of the challenges we face in finding another habitable planet due
to the likely diversity of conditions on rocky worlds within our Galaxy.Comment: Accepted for publication in the International Journal of Astrobiology
(IJA
Spectral Dependence of Coherent Backscattering of Light in a Narrow-Resonance Atomic System
We report a combined theoretical and experimental study of the spectral and
polarization dependence of near resonant radiation coherently backscattered
from an ultracold gas of 85Rb atoms. Measurements in an approximately 6 MHz
range about the 5s^{2}S_{1/2}- 5p^{2}P_{3/2}, F=3 - F'=4 hyperfine transition
are compared with simulations based on a realistic model of the experimental
atomic density distribution. In the simulations, the influence of heating of
the atoms in the vapor, magnetization of the vapor, finite spectral bandwidth,
and other nonresonant hyperfine transitions are considered. Good agreement is
found between the simulations and measurements.Comment: 10 pages, 12 figur
Light-cone fluctuations and the renormalized stress tensor of a massless scalar field
We investigate the effects of light-cone fluctuations over the renormalized
vacuum expectation value of the stress-energy tensor of a real massless
minimally coupled scalar field defined in a ()-dimensional flat space-time
with topology . For modeling the influence of
light-cone fluctuations over the quantum field, we consider a random
Klein-Gordon equation. We study the case of centered Gaussian processes. After
taking into account all the realizations of the random processes, we present
the correction caused by random fluctuations. The averaged renormalized vacuum
expectation value of the stress-energy associated with the scalar field is
presented
Self-Averaging Scaling Limits of Two-Frequency Wigner Distribution for Random Paraxial Waves
Two-frequency Wigner distribution is introduced to capture the asymptotic
behavior of the space-frequency correlation of paraxial waves in the radiative
transfer limits. The scaling limits give rises to deterministic transport-like
equations. Depending on the ratio of the wavelength to the correlation length
the limiting equation is either a Boltzmann-like integral equation or a
Fokker-Planck-like differential equation in the phase space. The solutions to
these equations have a probabilistic representation which can be simulated by
Monte Carlo method. When the medium fluctuates more rapidly in the longitudinal
direction, the corresponding Fokker-Planck-like equation can be solved exactly.Comment: typos correcte
- …