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Abstract

Optimum design of modern ground-satellite communication

systems requires the knowledge of rain-induced differential attenuation,

differential phase shift, and cross-polarization factors. After a

rather comprehensive assessment of different available analytical

techniques, an efficient technique is chosen to yield the

desireu scattering results. Tabulation of the scattered fields

for Pruppacher-Pitter raindrops with sizes ranging from 0.25 mm

to 3.5 mm at 200 C and at 30 GRz for sevaral incidence angles is

given.
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I. Introduction.

The optimum design of modern ground-satellite communication systems

requires detailed knowledge of the rain-induced radio propagation Ofects.1-5

Investigation by Pruppacher and Pitter6 on the shapes of realistic rain-

drops shows that raindrops take on shapes which deviate significantly from

spheres when their sizes exceed about 1 mm. In fact their shapes even depart

noticeably from oblate spheroidal shapes. It is well known according to the

electromagnetic scattering theory that the shape of a scatterer is a crucial

factor in determining the resonant scattering characteristics of a particle.

Hence, accurate treatment of the scattering of realistic non-spherical shape

raindrops is essential in the determination of rain-induced radio propagation

effects which may include the generation of cross polarized fields  and the

introduction of incoherent fields due to the presence of multiple scattering

phenomenon.8

Various aspects of the rain scattering problems have been treated by

a number of investigators using various justifiable or sometimes marginal

techniques. 
2-5 

The purpose of this paper is twofold. We shall first pro-

ride a rather comprehensive assessment of previously used techniques. Based

on our assessment we shall then select the most attractive method for rain-

scattering calculation. Then, complete tabulation of scattered fields for

Pruppacher-Pitter varying-shape raindrops with sizes ranging from 0.25 mm

to 3.5 mm at 200 : and at 30 GRz for several incidence angles will be given.

These extensive single particle scattering results also represent the

necessary input for the determination of the distribution of incoherent and

coherent intensities due to multiple scattering effects.8
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11. An Usessment of Available Techniques for the Raindrop Scattering

Problems.

The classical solutions of electromagnetic wave scattering are

limited to simple objects of separable boundaries such as spheres, cylinders,

etc. Recent developments in scattering analysis for scatterers of arbi-

trary shapes include the geometric theory of diffraction for high frequency

scattering 9 and the method of moment, 
10 

the perturbation method, 
11 

the

point matching method, 5 the extended boundary conditions method, 7 and the

finite element technique for resonant region scattering. 12

To achieve a proper perspective of the state-of-the-art of various

analytical/numerical techniques, an assessment is made in the following:

(a) Geometrical Theory of Diffraction.

This method is mainly a high frequency technique which treats the

smooth part of the scatterer by geometric optics and obtains the scattered

fields from edges and glazing surfaces via solutions of canonical problems

such as scattering by wedges, tips, etc. The geometric theory of diffraction

may yield reasonable results even at resonant frequencies. However, it is

still a technique most conveniently applied to convex and perfectly con-

ducting targets at high frequencies. When the targets are concave or

transparent, tracing the multiple scattering rays makes the method overly

cumbersome to use.

Advantages:

Easy to learn

Clear physical concept

Disadvantages:

Difficilt to apply to dielectric bodies.

Questionable validity at lower frequencies.
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(b) Hwcbod of Moment

This method is based on the solution of an integral equation. The

equation is a surface integral equation if the scatterer is a perfectly con-

ducting body, a pair of couyled surface integral equation if the scatterer

is a homogeneous dielectric body, and a volume integral equation if the

scatterer is an inhomogeneous dielectric body. If the dielectric scatterer

has a volume greater than (0.17X) 3 , the dekaand of the method of moment for

computer memory or time becomes excessive.

Advantages:

	

►,	 Efficient for thin conducting scatterer.

Disadvantages:
k

	

I	 Limited to dielectric scatterer of small volume.

E
(c) Perturbation Method.

This method is an extension of the Mie scatte-..ing solution to scatterers of

	

}	 non-spherical geometry by the boundary perturbation technique. This technique
f

is inherently limited to particle shapes which are small perturbations of a

sphere.

Advantages:

Analytic expressions are available.

Disadvantages:

Uncertain convergence

Limited to bodies that are small perturbations of a sphere.

Analytic expressions for higher-order terms are excessively

complicated.

(d) Point Matching Met hoe

	

Ai	 Field expressions for the interior region of the scatterer and for the



.,V-

exterior region are given in terms of complete sets of spherical harmonics.

Boundary conditions are satisfied by point -matching on the boundary surface.

W.-	 Advantages:

Conceptually simple

Disadvantages!

Uncertain convergence

Demands excessive computer time

Limited to bodies that are close to spherical shapes

(e) Extended Boundary Condition Method.

Integral representations for the fields can be derived which satisfy

the wave equation and all necessary boundary conditions. By expanding the

fields in terms of a complete set of spherical harmonics and by making use

of analytic continuation techniques, one may reduce the integral rEptasentations

to a set of linear algebraic equations.

Advantages:

May be used to treat scatterers of larger volume and arbitrary

shapes

Numerical results can be generated very efficiently

Disadvantages:

Usually not applicable to inhomogeneous dielectric scatterers

(f) Global-Local Finite Element Method.

The term Global-Local Finite Element Method refers to a numerical analysis

technique in which both the contemporary finite element and classical Rayleigh-

Ritz approximations are employed. The scattering problem is divided into two
/I

regions: the exterior region and the interior region. Without any sacrifice

4
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of rigor, it is assumed that the boundary surface between the exterior and

Interior regions is a sphere for three-dimensional problems aed a circular

cylinder fcr two-dimensional problems. It is further assumed that the

bo-.ndary surface is so chosen that the medium in the exterior region is

J	

nomogeneoua and that the inhomoguneous irregularly-shaped absorbing object

is contained within the interior region. Solutions of wave equations L. the

exterior homogeneous region are well-known. Tharefore, knowing the interior

fields at the boundary surface provides the necessary information to solve

the exterior fields by using the boundary conditions at the boundary surface.

The finite-elements technique is used to find the interior field.

Advantages:

Adaptable to scatterers of uon spherical shapes and inhomo-

gensous material.

Results are baeed on exact Maxwell's equations.

Disadvantages:

Requires extensive computer memory.

Complicated computer codes.

Based on this assessment it is noted that only two techniques are

sufficiently reliable to provide scattering results that possess little

uncertainty for Pruppacher and Pitter raindrops. They are the extended

boundary condition method and the finite element technique. The complexity
i

1

of the finite element formulation for truly three dimensional problems and

its enormous demand for computer memory renders this technique less than

attractive for extensive computations. The extended boundary condition

technique is therefore preferred.

E.
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the following relation:

E	
e ikR

sl

Es 
	 R

fll f12	 Ei1

f 21 f 22	 E 

W-" (4)

..	
III. A Brief Summnry of the Extended Boundary Condition Method.

The geometry of the problem is shown in Fig. 1. For a linearly polarized
c

incident plane wave

AL (z) Soe
jkz

a
i
	 (1)

where En is the amplitude of the plans wave, Si 
is a unit vector indicating

the polarization direction of the incident wave which is taken to be eitbar

the x or y direction, k is the free- 94pce wave number, and the wave is

propagating in the +z direction, the scattered field takes on the following

form:
ikP

,Ea(r) - f (o , i) 
e 
R	 (2)

where i and o acre, respectively, the incident direction and the observation

direction. Following the matrix notation of Ishimaru (19781 and van de Uulst

119571, the incident field and the far-zone scattered field can be written as

follows:

Ei - Eil Sit + Ei// !I//
(3)

Es `psi Set + 
Es

// 4//

where eil or OL and i// or es// are, respectively the unit vectors perpendi-

cular and parallel to the plane of scattering which is the plane containing

the vectors i and o. Note that S
i is necessarily equal to es , but a

I# is

not necessarily equal to e s//and E"and Ea# are related to Eil and Ei// by

6



The scattering functions S1' 82 . 83 and Si used by Van da Rulst as well as

the Stokes parameters can all be obtained from fll' f12 1 f21 and f22' ?or

examples

S1 1 fll , S2 - 1 f22, S3	 f21, V4 1 f12	 (S)

M.	
and if the incident wave has an arbitrary state of polarisation and its

Stokes parameters are given by 1
11 1 Ili' Ui and V

i, then the Stokes para-

meters IIs, Its , Us, and Vs of the scattered wave are given by

	

is	 If11I2	
If 1212

	

12s	 '	 I f21'
2
	If22I2

	Us	R2 2Re(f
llf2l 	 12) 2Re(ff22)

Vs	 21m(flif2l	 12) 2Imtff22)

where * means the complex conjugate.

Re(f11E12)	 -Im(f11 12 ) 	 Till

Re(f21f22)	 -Im(f21f22)	 1112i

Re(f11 f22+f12 f 21) -1m(fll f 22+f 12 f211 U1

Im(fll f22+f12f21) Re(f11f22♦f12 f21 Vi

Other commonly used parameters may also be defined in terme of the

function f (o, 1); such as:

The differential scattering cross section, Od(o, V- If (01 	 I	 (7)

The bistatic radar cross section, Obi (o, i) - 4n If (o, 
.1)12	

(8)

The backscattering cross section, Ob - 4n lf( -i, 1)1 2 	 (9)

Tits scattering cross section, os - 4' I f (o, 1)12 dpi	 (10)

On - differential solid angle)

The extinction cross section, o f - Os + as

- k :^.. (f(i,i))•1, - 6r^^- Im(fil(o))

- 7 Im(f22(o))
	 (11)

(Oa - absorption cross section, e i - unit vector in the direction of

polarization of the incident wave.)

7



So, knowing the matrix elements f
il l fl2' f

2l' f221 one may calculate

all the desired parameters. These matrix elements are obtained by solving the

boundary val%t4 problem. We intend to use the extended boundary condition

technique to solve this scattering problem.

The scattering lx dy, assumed to be homogeneous and isotropic, is

charactericad by the constitrtive parameters p  and c where P  
is the free space

permeability and c is the permittivity of the dielectric material (c may be

complex to account for the losay case). The surrounding medium is considered

to be free space with parameters uo , eQ . For the given incident field, the

scattered field must be determined.

The theoretical development for the extended boundary conditon

technique is as follows:

First, the Equivalence Principle is applied, breaking the scattering

problem into two separate problems, an exterior part and an interior part.

one equation for the unknown field quantities is derives fro'.:: the external

problem where it is found that the scattered field due to the surface currents

must completely cancel the Lacident field throughout the interior volume.

The internal problem is then considered and the fields within the

dielectric region are expanded it, regular vector spherical wave functions with

coefficients to be determined. Superposition is applied and the boundary

conditions at the surface lead to a linear system of integral equations for

the coefficients of they unknown surface fields in terms of the incident field.

The scattered far field is then determined by evaluating the internal

field at the surface and substituting into the original expression which gives

the exterior scattered field in terms of the surface fields.

r.

8



To avoid writing many lengthy mathematical expressions, detailed deri-

vation will not be given here. We shall simply state the final results:

(K + =J) cu + (L + f I) du = -jav	(12)

V = 1,2,...,N

(I + re L) cu + (J + ArK) du = -jbv	 (13)

where
2

I	 k—
IF
 f n.1 (kr') x M" (k'r')dS

2
J f n.M3 (kr')

ii
x N- (k'r')dS

n S--V — u —
z

K a o f
n.N3 (kr') x Ml (k'r')dS

S — v

2
L = k f n.N3 (kr') x N  (k'r')dS

n S — —„ — u —
and sr = -L. n is a unit vector normal to the boundary surface S and r' is

0

the radial victor from the origin to the boundary surface. a  and b y are

expansion coefficients for the incident wave defined as follows:

	

Ei(r) - 7 Dv (a MM (kr) + b NNll (kr) )
	

(14)

where v is a combined index incorporating a, m and n. D v is a normalization

constant

	

_	 (^*_+1 (nom) :	 = 1	 r = 0
Dv eM 4nn(n+1 n+m	

sm 2
} " > 0

The spherical wave harmonics M and N have been defined by Stratton 10 . These

yc	 functions, solutions of the vector wave equation, are given by,

'y	 Ml'3(r) = V x r cos 0 pM(cob e)z1 3 (kr)	 (15)

	

OM 	 mm n	 n

N, 3(r) 1 V x Ml 3(r)

	

omn	 k	 vmn

9



where a - even or odd,

pn(cos e) - associated Legendre function,

and zm' 3 (kr) - an appropriate spherical Bessel function.

For solutions of the wave equation which must be finite at r • 0, z1(kr)

jn(kr) and the resulting vector spherical functions M and N are known

as solutions of the first kind. The other vector spherical functions we

will be using are obtained by using the spherical Henkel functions, i.e.,

zn(kr) - hn(1) (kr) - jn(kr) + jnn(kr). This solution, representing outgoing

waves, is called the solution of t ►.e third kind.

cu and du are the expansion coefficients for the field inside the

dielectric which are defined as follows:

N
E(k'r) - E	 [c Ml (k'r) + du "(k'r))	 (16)

Val

where V incorporates the indices a, m, n and c u and du are unknown

coefficients. k' _ rrk and k - w67 . The H field internal to S is
S iven by

H(k'r) -
J

 
W11 

(V x E(k'r))

0

N
j I	 E [c (Vx t 1(k'r) + dU (V x NI(k'r))l

0 U'1

N

a - j u E [cu Nu(k' r) + du l(k'r)1	 (17)
o v-i

The coefficients of the scattered fields which are defined as follows:

Es(kr) - E [p M3 (kr) + q N3 (kr))	 (18)
Val v v	 v v

10



where r is outside a circumscribed sphere, are

N
Pv •_JDv E {[K' + rJ'] cp + [L'+ rI'] du}

Pal

N
qv JDv E {[I' + =L'] cu + (J'+ =K'] du }	 (19)

Pal

where

2

I' n s n. Ml — x ^(k'r7dS

2	 1-
J' s n .Ml(kr') x N'(k'r')dS

2
K' ,	

sn
.Nl(kr') x Ml(k'r')dS

U

2
L' s	 I n.Nl (kr') x Nl(k'r')dS.n s— v — —u —

The exact theoretical problem requires the solution of an infinite

set of zqudtions. The equations resulting from the External Problem are

such a set. The first concession to practical considerations is made in

the derivation of the internal Problem, where the infinite term spherical

expansion for the internal field is truncated to N terms. This finite

internal field expansion is then substituted into the first 2N equations

of the infinite set of Eqs. (13) and the final set of truncated equations

is obtained. The scattering resx:lts are obtained numerically by solving

the complete set of equations for successive values of N until the final

results (such as the differential scattering cross section) converge to a

specified accuracy. This insures that enough of the expansion terms have

been kept to guarantee the correct final result.

11



The indices It and v each run from 1 to N and are related to the
k:

i	 internal field expansions respectively. As indicated previously, they

incorporate the indices c, m and n where o is even or odd and m and n are

Indices of Bessel and Legendre functions. To distinguish between expansions

over v and u, the indices which they represent are unprimed and primed,

respectively, i.e.,

V is over o, m, n

u is over o', m', n'

where the expansion scheme is as follows:

amn = e01, o01, ell, oll, e02, o02, e12, o12, e22, o22, ...

where e = even and o = odd.

There are essentially four main steps in the solution for the diffe-

rential scattering cross section.

(1) Solution of the system of Eqs. (13) for the coefficients of the

internal field c µ and du in terms of the incident field coefficients au

and b  and S is the surface of the scattering object. Note that the

solution of the Eqs. (13) requires a matrix inversion procedure.

(2) Substitution of the coefficients c u and du into Eqs. (19) to

determine the coefficients of the scattered field.

(3) Substitution of the scattered field coefficients into a spherical

expansion for the far field vector amplitude.

Nf(eOfsleii)	 j vEl [ p^(e .f)+ jgvB^(e:f)

(4) Computation of the differential scattering cross section

od (e s ,f s) _ If(es1fsle0i)i2

t

12



IV. Display of Results and Discussion

Selected Pruppacher-Pitter raindrop shapes are displayed in Fig. 2.

It can be seen that as the raindrop size increases, its shape deviates

significantly from a sphere and it even differs noticeably from an oblate

spheroid. These Pruppacher-Pitter raindrop shapes were used in our compu-

tation and compilation of the scattering results. Specifically, we have

obtained the scattering matrix elements 
fil l f12' f21 ,

 f22 for the following

parameters:

Raindrop sizes: 0.25 mm (0.25 mm) 3.5 mm

Frequency: 30 GRz

Temperature: 20°C

A s : Oc (100) 3600

a : 00 (300) 900

f s : 00 (300) 1800

Results are tabulated in Table 1 which has been condensed into the two

microfiches attached at the end of this report.

We have, of course, compared our results with those obtained by Cross

and Morrison 4 , and Oguchi5 who used the point-matching technique and by

Morgan 12 who used the finite-element approach. The results all agree within

a few percentage points. These differences may be caused by numerical

errors due to finite grid size, finite number of matching points, finite

matrix size, finite integration steps, accumulated numerical errors or the

limitation of the particular numerical scheme. Based on this comparison,

one may conclude that the point-matching technique actually provides rather

good results in spite of uncertain convergence and the lack of rigor due to

"Rayleigh Phenomenon." It is also significant to note that our results agree

13



quite well with those obtained according to the finite-element approach whicl

is based on the exact Maxwell equations.

It is of interest to note that the scattering results for a Pruppacher.

Pitter shaped raindrop compared very closely to those for an equivalent

oblate spheroidal shaped raindrop even when their shapes are visibly differet

for large size drops (see Fig. 2). It appears that the absorptive character.

istics of water at 30 GHz and 200 C are responsible for minimizing the

differences in the scattering results due to shape differences in the Pruppacher-

Pitter and equivalent oblate spheroidal drops.

To illustrate the effect of drop size changes on the scattered field,

Figs. 3-5 are introduced. In Fig. 3 the normalized scattering, absorption and

extinction cross-sections are plotted as a function of raindrop sizes. The

relatively smooth character of the curves can again be attributed to the

absorptive nature of water. Polar plats of scattered fields in the 4 s - 900

plane for canting angles a - 00 and 600 and for various drop sizes are shown

in Figs. 4-6. It can be seen that no cross polarized field is generated

for ss.all dre sizes (with spherical shapes) or for canting angle a - 0.

(See Fig. 4.) For large drop sizes (with non spherical shapes) and for

canting angle a f 0, a cross polarized field is generated. (See Fig. S and 6.)
One also notes that the induced cross polarized field is at least one order

of magnitude weaker than the non-cross polarized scattered field. This is

again due to the absorptive characteristics of the raindrops under consideration.

In conclusion one may state that the extended boundary condition method

is an efficient method in yielding reliable scattering results for non-

spherical Pruppacher-Pitter raindrops. One notes that the large absorption

14



constant of water at 30 GRz and 200 C tends to minimize the shape effect

on the scattered field. It is expected that, due to the transparent nature

of ice at 30 GRz, the shape factor for ice particles will play a significant

role in giving rise to the generation of cross polarized field.
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PARAMETERS FOR CALCULATIONS

PRUPPACHER - PITTER RAINDROP SIZES

FREQUENCY: 30 GHz

TEMPERATURE: 2fC

ac = d° (3(°) 9d°

^_ = d° (3d°) 180°

9s = oP (10°) 360°

0.25 mm (0.25 mm) 3.5 mm

0 CD Q
0.25 mm
	

1.5 mm
	

3.5 mm

RAINDROP SHAPES

Figure 2. Pruppacher-Pitter raindrops
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