1,663 research outputs found

    Transport coefficients of multi-particle collision algorithms with velocity-dependent collision rules

    Full text link
    Detailed calculations of the transport coefficients of a recently introduced particle-based model for fluid dynamics with a non-ideal equation of state are presented. Excluded volume interactions are modeled by means of biased stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are exactly conserved locally. A general scheme to derive transport coefficients for such biased, velocity dependent collision rules is developed. Analytic expressions for the self-diffusion coefficient and the shear viscosity are obtained, and very good agreement is found with numerical results at small and large mean free paths. The viscosity turns out to be proportional to the square root of temperature, as in a real gas. In addition, the theoretical framework is applied to a two-component version of the model, and expressions for the viscosity and the difference in diffusion of the two species are given.Comment: 31 pages, 8 figures, accepted by J. Phys. Cond. Matte

    Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures

    Full text link
    A recently introduced particle-based model for fluid dynamics with continuous velocities is generalized to model immiscible binary mixtures. Excluded volume interactions between the two components are modeled by stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are conserved locally, and entropically driven phase separation occurs for high collision rates. An explicit expression for the equation of state is derived, and the concentration dependence of the bulk free energy is shown to be the same as that of the Widom-Rowlinson model. Analytic results for the phase diagram are in excellent agreement with simulation data. Results for the line tension obtained from the analysis of the capillary wave spectrum of a droplet agree with measurements based on the Laplace's equation. The introduction of "amphiphilic" dimers makes it possible to model the phase behavior and dynamics of ternary surfactant mixtures.Comment: 7 pages including 6 figure

    Thermodynamics of the frustrated J1J_1-J2J_2 Heisenberg ferromagnet on the body-centered cubic lattice with arbitrary spin

    Full text link
    We use the spin-rotation-invariant Green's function method as well as the high-temperature expansion to discuss the thermodynamic properties of the frustrated spin-SS J1J_{1}-J2J_{2} Heisenberg magnet on the body-centered cubic lattice. We consider ferromagnetic nearest-neighbor bonds J1<0J_1 < 0 and antiferromagnetic next-nearest-neighbor bonds J2≥0J_2 \ge 0 and arbitrary spin SS. We find that the transition point J2cJ_2^c between the ferromagnetic ground state and the antiferromagnetic one is nearly independent of the spin SS, i.e., it is very close to the classical transition point J2c,clas=23∣J1∣J_2^{c,{\rm clas}}= \frac{2}{3}|J_1|. At finite temperatures we focus on the parameter regime J2<J2cJ_2<J_2^c with a ferromagnetic ground-state. We calculate the Curie temperature TC(S,J2)T_{C}(S,J_{2}) and derive an empirical formula describing the influence of the frustration parameter J2J_{2} and spin SS on TCT_C. We find that the Curie temperature monotonically decreases with increasing frustration J2J_2, where very close to J2c,clasJ_2^{c,{\rm clas}} the TC(J2)T_C(J_2)-curve exhibits a fast decay which is well described by a logarithmic term 1/log(23∣J1∣−J2)1/\textrm{log}(\frac{2}{3}|J_1|-J_{2}). To characterize the magnetic ordering below and above TCT_C, we calculate the spin-spin correlation functions ⟨S0SR⟩\langle {\bf S}_{\bf 0} {\bf S}_{\bf R} \rangle, the spontaneous magnetization, the uniform static susceptibility χ0\chi_0 as well as the correlation length ξ\xi. Moreover, we discuss the specific heat CVC_V and the temperature dependence of the excitation spectrum. As approaching the transition point J2cJ_2^c some unusual features were found, such as negative spin-spin correlations at temperatures above TCT_C even though the ground state is ferromagnetic or an increase of the spin stiffness with growing temperature.Comment: 19 pages, 10 figures, version as in EPJ

    Thermodynamics of the one-dimensional frustrated Heisenberg ferromagnet with arbitrary spin

    Full text link
    The thermodynamic quantities (spin-spin correlation functions <{\bf S}_0{\bf S}_n>, correlation length {\xi}, spin susceptibility {\chi}, and specific heat C_V) of the frustrated one-dimensional J1-J2 Heisenberg ferromagnet with arbitrary spin quantum number S below the quantum critical point, i.e. for J2< |J1|/4, are calculated using a rotation-invariant Green-function formalism and full diagonalization as well as a finite-temperature Lanczos technique for finite chains of up to N=18 sites. The low-temperature behavior of the susceptibility {\chi} and the correlation length {\xi} is well described by \chi = (2/3)S^4 (|J1|-4J2) T^{-2} + A S^{5/2} (|J1|-4J2)^{1/2} T^{-3/2} and \xi = S^2 (|J1|-4J2) T^{-1} + B S^{1/2} (|J1|-4J2)^{1/2} T^{-1/2} with A \approx 1.1 ... 1.2 and B \approx 0.84 ... 0.89. The vanishing of the factors in front of the temperature at J2=|J1|/4 indicates a change of the critical behavior of {\chi} and {\xi} at T \to 0. The specific heat may exhibit an additional frustration-induced low-temperature maximum when approaching the quantum critical point. This maximum appears for S=1/2 and S=1, but was not found for S>1.Comment: 8 pages, 7 figure

    Quantum J1J_1--J2J_2 antiferromagnet on the stacked square lattice: Influence of the interlayer coupling on the ground-state magnetic ordering

    Full text link
    Using the coupled-cluster method (CCM) and the rotation-invariant Green's function method (RGM), we study the influence of the interlayer coupling J⊥J_\perp on the magnetic ordering in the ground state of the spin-1/2 J1J_1-J2J_2 frustrated Heisenberg antiferromagnet (J1J_1-J2J_2 model) on the stacked square lattice. In agreement with known results for the J1J_1-J2J_2 model on the strictly two-dimensional square lattice (J⊥=0J_\perp=0) we find that the phases with magnetic long-range order at small J2<Jc1J_2< J_{c_1} and large J2>Jc2J_2> J_{c_2} are separated by a magnetically disordered (quantum paramagnetic) ground-state phase. Increasing the interlayer coupling J⊥>0J_\perp>0 the parameter region of this phase decreases, and, finally, the quantum paramagnetic phase disappears for quite small J⊥∼0.2...0.3J1J_\perp \sim 0.2 ... 0.3 J_1.Comment: 4 pages, 3 figure

    Green's function theory of quasi-two-dimensional spin-half Heisenberg ferromagnets: stacked square versus stacked kagom\'e lattice

    Full text link
    We consider the thermodynamic properties of the quasi-two-dimensional spin-half Heisenberg ferromagnet on the stacked square and the stacked kagom\'e lattices by using the spin-rotation-invariant Green's function method. We calculate the critical temperature TCT_C, the uniform static susceptibility χ\chi, the correlation lengths ξν\xi_\nu and the magnetization MM and investigate the short-range order above TCT_C. We find that TCT_C and MM at T>0T>0 are smaller for the stacked kagom\'e lattice which we attribute to frustration effects becoming relevant at finite temperatures.Comment: shortened version as published in PR

    Electron-hole pair condensation at the semimetal-semiconductor transition: a BCS-BEC crossover scenario

    Full text link
    We act on the suggestion that an excitonic insulator state might separate---at very low temperatures---a semimetal from a semiconductor and ask for the nature of these transitions. Based on the analysis of electron-hole pairing in the extended Falicov-Kimball model, we show that tuning the Coulomb attraction between both species, a continuous crossover between a BCS-like transition of Cooper-type pairs and a Bose-Einstein condensation of preformed tightly-bound excitons might be achieved in a solid-state system. The precursor of this crossover in the normal state might cause the transport anomalies observed in several strongly correlated mixed-valence compounds.Comment: 5 pages, 5 figures, substantially revised versio
    • …
    corecore