68,230 research outputs found

    The angular spin current and its physical consequences

    Full text link
    We find that in order to completely describe the spin transport, apart from spin current (or linear spin current), one has to introduce the angular spin current. The two spin currents respectively describe the translational and rotational motion of a spin. The definitions of these spin current densities are given and their physical properties are discussed. Both spin current densities appear naturally in the spin continuity equation. Moreover we predict that the angular spin current can also induce an electric field E\vec{E}, and in particular E\vec{E} scales as 1/r21/r^2 at large distance rr, whereas the E\vec{E} field generated from the linear spin current goes as 1/r31/r^3.Comment: 7 pages, 2 figure

    Direct Investigation of Superparamagnetism in Co Nanoparticle Films

    Full text link
    A direct probe of superparamagnetism was used to determine the complete anisotropy energy distribution of Co nanoparticle films. The films were composed of self-assembled lattices of uniform Co nanoparticles 3 nm or 5 nm in diameter, and a variable temperature scanning-SQUID microscope was used to measure temperature-induced spontaneous magnetic noise in the samples. Accurate measurements of anisotropy energy distributions of small volume samples will be critical to magnetic optimization of nanoparticle devices and media.Comment: 4 pages, 4 figures. Submitted to Physical Review Letter

    Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars

    Full text link
    We present a method to measure the effective field contribution to spin-transfer-induced interactions between the magnetic layers in a trilayer nanostructure, which enables spin-current effects to be distinguished from the usual charge-current-induced magnetic fields. This technique is demonstrated on submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic layers in the trilayer is measured as a function of current while the direction of magnetization of the other layer is kept fixed, first in one direction and then in the opposite direction. These measurements show a current-dependent shift of the hysteresis loop which, based on the symmetry of the magnetic response, we associate with spin-transfer. The observed loop-shift with applied current at room temperature is reduced in measurements at 4.2 K. We interprete these results both in terms of a spin-current dependent effective activation barrier for magnetization reversal and a spin-current dependent effective magnetic field. From data at 4.2 K we estimate the magnitude of the spin-transfer induced effective field to be 1.5×107\sim 1.5 \times 10^{-7} Oe cm2^2/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure

    Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    Full text link
    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of beyond graphene compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functional for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally

    Opposite spin accumulations on the transverse edges by the confining potential

    Full text link
    We show that the spin-orbit interaction induced by the boundary confining potential causes opposite spin accumulations on the transverse edges in a zonal two-dimensional electron gas in the presence of external longitudinal electric field. While the bias is reversed, the spin polarized direction is also reversed. The intensity of the spin accumulation is proportional to the bias voltage. In contrast to the bulk extrinsic and intrinsic spin Hall effects, the spin accumulation by the confining potential is almost unaffected by impurity and survives even in strong disorder. The result provides a new mechanism to explain the recent experimental data.Comment: 5 pages, 6 figure

    Electrically driven magnetism on a Pd thin film

    Get PDF
    Using first-principles density functional calculations we demonstrate that ferromagnetism can be induced and modulated on an otherwise paramagnetic Pd metal thin-film surface through application of an external electric field. As free charges are either accumulated or depleted at the Pd surface to screen the applied electric field there is a corresponding change in the surface density of states. This change can be made sufficient for the Fermi-level density of states to satisfy the Stoner criterion, driving a transition locally at the surface from a paramagnetic state to an itinerant ferromagnetic state above a critical applied electric field, Ec. Furthermore, due to the second-order nature of this transition, the surface magnetization of the ferromagnetic state just above the transition exhibits a substantial dependence on electric field, as the result of an enhanced magnetoelectric susceptibility. Using a linearized Stoner model we explain the occurrence of the itinerant ferromagnetism and demonstrate that the magnetic moment on the Pd surface follows a square-root variation with electric field consistent with our first-principles calculations.Comment: 8 pages, 7 figure

    Magnetization Relaxation and Collective Spin Excitations in Correlated Double--Exchange Ferromagnets

    Full text link
    We study spin relaxation and dynamics of collective spin excitations in correlated double--exchange ferromagnets. For this, we introduce an expansion of the Green's functions equations of motion that treats non--perturbativerly all correlations between a given number of spin and charge excitations and becomes exact within a sub--space of states. Our method treats relaxation beyond Fermi's Golden Rule while recovering previous variational results for the spin--wave dispersion. We find that the momentum dependence of the spin--wave dephasing rate changes qualitatively due to the on--site Coulomb interaction, in a way that resembles experiment, and depends on its interplay with the magnetic exchange interaction and itinerant spin lifetime. We show that the collective spin relaxation and its dependence on the carrier concentration depends sensitively on three--body correlations between a spin excitation and a Fermi sea electron and hole. The above spin dynamics can be controlled via the itinerant carrier population.Comment: 13 pages, 10 figures, published in Phys. Rev.

    Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet

    Get PDF
    Studies of the mechanical properties of single-walled carbon nanotubes are hindered by the availability only of ensembles of tubes with a range of diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes. Under high pressure, the radial breathing mode shows a strong environmental effect shown here to be largely independent of the nature of the environment . For the G-mode, the pressure coefficient varies with diameter consistent with the thick-wall tube model. However, results show an unexpectedly strong environmental effect on the pressure coefficients. Reappraisal of data for graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review

    Mixed-state fidelity and quantum criticality at finite temperature

    Get PDF
    We extend to finite temperature the fidelity approach to quantum phase transitions (QPTs). This is done by resorting to the notion of mixed-state fidelity that allows one to compare two density matrices corresponding to two different thermal states. By exploiting the same concept we also propose a finite-temperature generalization of the Loschmidt echo. Explicit analytical expressions of these quantities are given for a class of quasi-free fermionic Hamiltonians. A numerical analysis is performed as well showing that the associated QPTs show their signatures in a finite range of temperatures.Comment: 7 pages, 4 figure
    corecore