3,563 research outputs found

    A Dichotomy in Satellite Quenching Around L* Galaxies

    Full text link
    We examine the star formation properties of bright (~0.1 L*) satellites around isolated ~L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey DR7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also plays at least an indirect role in quenching star formation in their bright satellites. The previously-reported tendency for "galactic conformity" in color/morphology may be a by-product of this host-specific quenching dichotomy. The S\'ersic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter halos that are ~45% more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ~30% of ~0.1 L* galaxies that fall in from the field are quenched around passive hosts, compared with ~0% around star forming hosts.Comment: 14 pages, 9 figure

    The impact of a pharmacist on post-take ward round prescribing and medication appropriateness

    Get PDF
    Background Medication communication and prescribing on the post-take ward round following patient admission to hospital can be suboptimal leading to worse patient outcomes. Objective To evaluate the impact of clinical pharmacist participation on the post-take ward round on the appropriateness of medication prescribing, medication communication, and overall patient health care outcomes. Setting Tertiary referral teaching hospital, Brisbane, Australia. Method A pre-post intervention study was undertaken that compared the addition of a senior clinical pharmacist attending the post-take ward was compared to usual wardbase pharmacist service, with no pharmacist present of the post-take ward round. We assessed the proportion of patients with an improvement in medication appropriateness from admission to discharge, using the START/STOPP checklists. Medication communication was assessed by the mean number of brief and in-depth discussions, with health care outcomes measured by comparing length of stay and 28-day readmission rates. Main outcome measures: Medication appropriateness according to the START/STOPP list, number and type of discussions with team members and length of stay and readmission rate. Results Two hundred and sixty patients were recruited (130 pre- and 130-post-intervention), across 23 and 20 post-take ward rounds, respectively. Post-intervention, there was increase in the proportion of patients who had an improvement medication appropriateness (pre-intervention 25.4%, post-intervention 36.9%; p = 0.004), the number of in-depth discussions about patients’ medication (1.9 ± 1.7 per patient pre-intervention, 2.7 ± 1.7 per patient post-, p < 0.001), and the number relating to high-risk medications (0.71 ± 1.1 per patient pre-intervention, to 1.2 ± 1.2 per patient post-, p < 0.05). Length of stay and 28-day mortality were unchanged. Conclusion Clinical pharmacist participation on the post-take ward round leads to improved medication-related communication and improved medication appropriateness but did not significantly improve health care outcomes

    Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity

    Get PDF
    Neptune's largest satellite, Triton, is one of the most fascinating and enigmatic bodies in the solar system. Among its numerous interesting traits, Triton appears to have far fewer craters than would be expected if its surface was primordial. Here we combine the best available crater count data for Triton with improved estimates of impact rates by including the Kuiper Belt as a source of impactors. We find that the population of impactors creating the smallest observed craters on Triton must be sub-km in scale, and that this small-impactor population can be best fit by a differential power-law size index near -3. Such results provide interesting, indirect probes of the unseen small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and Oort Cloud impactor flux estimates, we also recalculate estimated ages for several regions of Triton's surface imaged by Voyager 2, and find that Triton was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating Triton was still active after some 90% to 98% of the age of the solar system), and perhaps even more recently. The time-averaged volumetric resurfacing rate on Triton implied by these results, 0.01 km3^3 yr1^{-1} or more, is likely second only to Io and Europa in the outer solar system, and is within an order of magnitude of estimates for Venus and for the Earth's intraplate zones. This finding indicates that Triton likely remains a highly geologically active world at present, some 4.5 Gyr after its formation. We briefly speculate on how such a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ, in pres

    The origin of galaxy scaling laws in LCDM

    Full text link
    It has long been recognized that tight relations link the mass, size, and characteristic velocity of galaxies. These scaling laws reflect the way in which baryons populate, cool, and settle at the center of their host dark matter halos; the angular momentum they retain in the assembly process; as well as the radial distribution and mass scalings of the dark matter halos. There has been steady progress in our understanding of these processes in recent years, mainly as sophisticated N-body and hydrodynamical simulation techniques have enabled the numerical realization of galaxy models of ever increasing complexity, realism, and appeal. These simulations have now clarified the origin of these galaxy scaling laws in a universe dominated by cold dark matter: these relations arise from the tight (but highly non-linear) relations between (i) galaxy mass and halo mass, (ii) galaxy size and halo characteristic radius; and (iii) from the self-similar mass nature of cold dark matter halo mass profiles. The excellent agreement between simulated and observed galaxy scaling laws is a resounding success for the LCDM cosmogony on the highly non-linear scales of individual galaxies.Comment: Contribution to the Proceedings of the Simons Conference "Illuminating Dark Matter", held in Kruen, Germany, in May 2018, eds. R. Essig, K. Zurek, J. Fen

    Klein-Gordon Solutions on Non-Globally Hyperbolic Standard Static Spacetimes

    Full text link
    We construct a class of solutions to the Cauchy problem of the Klein-Gordon equation on any standard static spacetime. Specifically, we have constructed solutions to the Cauchy problem based on any self-adjoint extension (satisfying a technical condition: "acceptability") of (some variant of) the Laplace-Beltrami operator defined on test functions in an L2L^2-space of the static hypersurface. The proof of the existence of this construction completes and extends work originally done by Wald. Further results include the uniqueness of these solutions, their support properties, the construction of the space of solutions and the energy and symplectic form on this space, an analysis of certain symmetries on the space of solutions and of various examples of this method, including the construction of a non-bounded below acceptable self-adjoint extension generating the dynamics

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Neutralino Decays at the CERN LHC

    Full text link
    We study the distribution of lepton pairs from the second lightest neutralino decay \tchi^0_2\to\tchi^0_1 l^+l^-. This decay mode is important to measure the mass difference between \tchi^0_2 and the lightest neutralino \tchi^0_1, which helps to determine the parameters of the minimal supersymmetric standard model at the CERN LHC. We found that the decay distribution strongly depends on the values of underlying MSSM parameters. For some extreme cases, the amplitude near the end point of the lepton invariant mass distribution can be suppressed so strongly that one needs the information of the whole m_{ll} distribution to extract m_{\tchi^0_2}-m_{\tchi^0_1}. On the other hand, if systematic errors on the acceptance can be controlled, this distribution can be used to constrain slepton masses and the Z\tchi^0_2\tchi^0_1 coupling. Measurements of the velocity distribution of \tchi^0_2 from samples near the end point of the m_{ll} distribution, and of the asymmetry of the p_T of leptons, would be useful to reduce the systematic errors.Comment: 23 pages, latex2e, 9 figures, minor change, accepted to PR

    Returning children home from care: What can be learned from local authority data?

    Get PDF
    International Human Rights and child rights conventions as well as U.K. wide legislation and guidance require that children in care should be returned home to one or both parents wherever possible. Reunification with parents is the most common route out of care, but rates of re‐entry are often higher than for other exit routes. This study used 8 years of administrative data (on 2,208 care entrants), collected by one large English local authority, to examine how many children were returned home and to explore factors associated with stable reunification (not re‐entering care for at least 2 years). One‐third of children (36%) had been reunified, with adolescent entrants being the most likely age group to return home. Three quarters (75%) of reunified children had a stable reunification. In a fully adjusted regression model, age at entry, being on a care order prior to return home, staying longer in care, being of minority ethnicity, and having fewer placements in care were all significant in predicting chances of stable reunification. The results underline the importance of properly resourcing reunification services. The methods demonstrate the value to local authorities of analysing their own data longitudinally to understand the care pathways for children they look after
    corecore