1,493 research outputs found

    Candidate molecular ions for an electron electric dipole moment experiment

    Get PDF
    This paper is a theoretical work in support of a newly proposed experiment (R. Stutz and E. Cornell, Bull. Am. Soc. Phys. 89, 76 2004) that promises greater sensitivity to measurements of the electron's electric dipole moment (EDM) based on the trapping of molecular ions. Such an experiment requires the choice of a suitable molecule that is both experimentally feasible and possesses an expectation of a reasonable EDM signal. We find that the molecular ions PtH+, HfH+, and HfF+ are suitable candidates in their low-lying triplet Delta states. In particular, we anticipate that the effective electric fields generated inside these molecules are approximately of 73 GV/cm, -17 GV/cm, and -18 GV/cm respectively. As a byproduct of this discussion, we also explain how to make estimates of the size of the effective electric field acting in a molecule, using commercially available, nonrelativistic molecular structure software.Comment: 25 pages, 3 figures, submitted to Physical Review

    Coupled-Bunch Beam Breakup due to Resistive-Wall Wake

    Full text link
    The coupled-bunch beam breakup problem excited by the resistive wall wake is formulated. An approximate analytic method of finding the asymptotic behavior of the transverse bunch displacement is developed and solved.Comment: 8 page

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 10−1310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure

    Repulsive Forces Between Looping Chromosomes Induce Entropy-Driven Segregation

    Get PDF
    One striking feature of chromatin organization is that chromosomes are compartmentalized into distinct territories during interphase, the degree of intermingling being much smaller than expected for linear chains. A growing body of evidence indicates that the formation of loops plays a dominant role in transcriptional regulation as well as the entropic organization of interphase chromosomes. Using a recently proposed model, we quantitatively determine the entropic forces between chromosomes. This Dynamic Loop Model assumes that loops form solely on the basis of diffusional motion without invoking other long-range interactions. We find that introducing loops into the structure of chromatin results in a multi-fold higher repulsion between chromosomes compared to linear chains. Strong effects are observed for the tendency of a non-random alignment; the overlap volume between chromosomes decays fast with increasing loop number. Our results suggest that the formation of chromatin loops imposes both compartmentalization as well as order on the system without requiring additional energy-consuming processes

    Two accreting protoplanets around the young star PDS 70

    Get PDF
    Newly forming proto-planets are expected to create cavities and substructures in young, gas-rich proto-planetary disks, but they are difficult to detect as they could be confused with disk features affected by advanced image-analysis techniques. Recently, a planet was discovered inside the gap of the transitional disk of the T-Tauri star PDS 70. Here we report on the detection of strong H-alpha emission from two distinct locations in the PDS 70 system, one corresponding to the previously discovered planet PDS 70 b, which confirms the earlier Hα\alpha detection, and another located close to the outer-edge of the gap, coinciding with a previously identified bright dust spot in the disk and with a small opening in a ring of molecular emission. We identify this second Hα\alpha peak as a second proto-planet in the PDS 70 system. The Hα\alpha emission spectra of both proto-planets indicate ongoing accretion onto the proto-planets, which appear to be near a 2:1 mean motion resonance. Our observations show that adaptive-optics-assisted, medium-resolution, integral-field spectroscopy with MUSE targeting accretion signatures will be a powerful way to trace ongoing planet formation in transitional disks at different stages of their evolution. Finding more young planetary systems in mean motion resonance would give credibility to the Grand Tack hypothesis in which Jupiter and Saturn migrated in a resonance orbit during the early formation period of our Solar System.Comment: Nature Astronomy, June 3, 2019; 15 pages, 3 Figs, 1 Tabl

    Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders

    Full text link
    For sequences of complex 3D shapes in time we present a general approach to detect patterns for their analysis and to predict the deformation by making use of structural components of the complex shape. We incorporate long short-term memory (LSTM) layers into an autoencoder to create low dimensional representations that allow the detection of patterns in the data and additionally detect the temporal dynamics in the deformation behavior. This is achieved with two decoders, one for reconstruction and one for prediction of future time steps of the sequence. In a preprocessing step the components of the studied object are converted to oriented bounding boxes which capture the impact of plastic deformation and allow reducing the dimensionality of the data describing the structure. The architecture is tested on the results of 196 car crash simulations of a model with 133 different components, where material properties are varied. In the latent representation we can detect patterns in the plastic deformation for the different components. The predicted bounding boxes give an estimate of the final simulation result and their quality is improved in comparison to different baselines

    Prospects for an electron electric dipole moment search in metastable ThO and ThF+^{\rm +}

    Full text link
    The observation of an electron electric dipole moment (eEDM) would have major ramifications for the standard model of physics. Polar molecules offer a near-ideal laboratory for such searches due to the large effective electric field (Feff{\bf F}_{\rm eff}), on order of tens of GV/cm that can be easily oriented in the lab frame. We present an improved method for simply and accurately determining Feff{\bf F}_{\rm eff}, in a heavy polar molecule, allowing for a quick determination of candidates for an eEDM experiment. We apply this method to ThO and ThF+^{\rm +}, both of which possess metastable 3Δ^3\Delta electronic states. The values of Feff{\bf F}_{\rm eff} in ThO and ThF+^{\rm +} are estimated to be 104 GV/cm and 90 GV/cm respectively, and are therefore two of the best known candidates for the eEDM search.Comment: Two column format submitted to PR

    Effective s- and p-Wave Contact Interactions in Trapped Degenerate Fermi Gases

    Full text link
    The structure and stability of dilute degenerate Fermi gases trapped in an external potential is discussed with special emphasis on the influence of s- and p-wave interactions. In a first step an Effective Contact Interaction for all partial waves is derived, which reproduces the energy spectrum of the full potential within a mean-field model space. Using the s- and p-wave part the energy density of the multi-component Fermi gas is calculated in Thomas-Fermi approximation. On this basis the stability of the one- and two-component Fermi gas against mean-field induced collapse is investigated. Explicit stability conditions in terms of density and total particle number are given. For the single-component system attractive p-wave interactions limit the density of the gas. In the two-component case a subtle competition of s- and p-wave interactions occurs and gives rise to a rich variety of phenomena. A repulsive p-wave part, for example, can stabilize a two-component system that would otherwise collapse due to an attractive s-wave interaction. It is concluded that the p-wave interaction may have important influence on the structure of degenerate Fermi gases and should not be discarded from the outset.Comment: 18 pages, 11 figures (using RevTEX4

    Cooper Pairing in Ultracold K-40 Using Feshbach Resonances

    Full text link
    We point out that the fermionic isotope K-40 is a likely candidate for the formation of Cooper pairs in an ultracold atomic gas. Specifically, in an optical trap that simultaneously traps the spin states |9/2,-9/2> and |9/2,-7/2>, there exists a broad magnetic field Feshbach resonance at B = 196 gauss that can provide the required strong attractive interaction between atoms. An additional resonance, at B = 191 gauss, could generate p-wave pairing between identical |9/2,-7/2> atoms. A Cooper-paired degenerate Fermi gas could thus be constructed with existing ultracold atom technology.Comment: 4 pages, 2 figs, submitted to Phys. Rev.
    • …
    corecore