263 research outputs found
Transport theory with self-consistent confinement related to the lattice data
The space-time development of a quark-gluon plasma is calculated from a
Vlasov equation for the distribution function of quasiparticles with medium
dependent masses. At each space-time point the masses are calculated
selfconsistently from a gap equation, whose form is determined by the
requirement that in thermal equilibrium and for a range of temperatures the
energy density of the quasi-particle system is identical to the one from
lattice calculations . The numerical solutions of the Vlasov equation display
confinement. Relations to effective theories like that by Friedberg Lee and
Nambu Jona-Lasinio are established.Comment: 9 pages, 12 figure
Nonlocal field correlators on the lattice in HP^1 sigma-model
Connected two-point field strength correlators have been measured on the
lattice in quaternionic projective sigma-model of pure SU(2) Yang-Mills theory.
The correlation lengths, extracted from the exponential fit for these
correlators, are found to be lambda_1^{-1} = 1.40(3) GeV and lambda^{-1} =
1.51(3) GeV in good agreement with other existing calculations. The dependence
of bilocal functions on the connector shape was studied.Comment: 11 pages, 9 figures, to be published in JETP Letter
Photoelectron Escape Depth and Inelastic Secondaries in High Temperature Superconductors
We calculate the photoelectron escape depth in the high temperature
superconductor Bi2212 by use of electron energy-loss spectroscopy data. We find
that the escape depth is only 3 Ang. for photon energies typically used in
angle resolved photoemission measurements. We then use this to estimate the
number of inelastic secondaries, and find this to be quite small near the Fermi
energy. This implies that the large background seen near the Fermi energy in
photoemission measurements is of some other origin.Comment: 2 pages, revtex, 3 encapsulated postscript figure
ARPES on HTSC: simplicity vs. complexity
A notable role in understanding of microscopic electronic properties of high
temperature superconductors (HTSC) belongs to angle resolved photoemission
spectroscopy (ARPES). This technique supplies a direct window into reciprocal
space of solids: the momentum-energy space where quasiparticles (the electrons
dressed in clouds of interactions) dwell. Any interaction in the electronic
system, e.g. superconducting pairing, leads to modification of the
quasi-particle spectrum--to redistribution of the spectral weight over the
momentum-energy space probed by ARPES. A continued development of the technique
had an effect that the picture seen through the ARPES window became clearer and
sharper until the complexity of the electronic band structure of the cuprates
had been resolved. Now, in an optimal for superconductivity doping range, the
cuprates much resemble a normal metal with well predicted electronic structure,
though with rather strong electron-electron interaction. This principal
disentanglement of the complex physics from complex structure reduced the
mystery of HTSC to a tangible problem of interaction responsible for
quasi-particle formation. Here we present a short overview of resent ARPES
results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN
A Bound on the Energy Loss of Partons in Nuclei
We derive a quantum mechanical upper bound on the amount of radiative energy
loss suffered by high energy quarks and gluons in nuclear matter. The bound
shows that the nuclear suppression observed in quarkonium production at high
cannot be explained in terms of energy loss of the initial or final
parton states. We also argue that no nuclear suppression is expected in the
photoproduction of light hadrons at large .Comment: 15 pages, 1 figure included as a Postscript file, phyzzx.te
Geometric Parameterization of Absorption in Heavy Ion Collisions
We calculate the survival probability of particles in various
colliding systems using a Glauber model. An analysis of recent data has
reported a -nucleon breakup cross section of 6.20.7 mb derived
from an exponential fit to the ratio of to Drell-Yan yields as a
function of a simple, linearly-averaged mean path length through the nuclear
medium. Our calculations indicate that, due to the nature of the calculation,
this approach yields an apparent breakup cross section which is systematically
lower than the actual value.Comment: LaTex, 7 pages, 2 figure
Leading nucleon and inelasticity in hadron-nucleus interactions
We present in this paper a calculation of the average proton-nucleus ine-
lasticity. Using an Iterative Leading Particle Model and the Glauber model, we
relate the leading particle distribution in nucleon-nucleus interactions with
the respective one in nucleon-proton collisions. To describe the leading
particle distribution in nucleon-proton collisions, we use the Regge-Mueller
formalism. To appear in Journal of Physics G.Comment: 11 pages, 2 figure
Effect of Reducing Atmosphere on the Magnetism of Zn1-xCoxO Nanoparticles
We report the crystal structure and magnetic properties of Zn1-xCoxO
nanoparticles synthesized by heating metal acetates in organic solvent. The
nanoparticles were crystallized in wurtzite ZnO structure after annealing in
air and in a forming gas (Ar95%+H5%). The X-ray diffraction and X-ray
photoemission spectroscopy (XPS) data for different Co content show clear
evidence for the Co+2 ions in tetrahedral symmetry, indicating the substitution
of Co+2 in ZnO lattice. However samples with x=0.08 and higher cobalt content
also indicate the presence of Co metal clusters. Only those samples annealed in
the reducing atmosphere of the forming gas, and that showed the presence of
oxygen vacancies, exhibited ferromagnetism at room temperature. The air
annealed samples remained non-magnetic down to 77K. The essential ingredient in
achieving room temperature ferromagnetism in these Zn1-xCoxO nanoparticles was
found to be the presence of additional carriers generated by the presence of
the oxygen vacancies.Comment: 11 pages, 6 figures, submitted to Nanotechnology IO
Systematic Analysis Method for Color Transparency Experiments
We introduce a data analysis procedure for color transparency experiments
which is considerably less model dependent than the transparency ratio method.
The new method is based on fitting the shape of the A dependence of the nuclear
cross section at fixed momentum transfer to determine the effective attenuation
cross section for hadrons propagating through the nucleus. The procedure does
not require assumptions about the hard scattering rate inside the nuclear
medium. Instead, the hard scattering rate is deduced directly from the data.
The only theoretical input necessary is in modelling the attenuation due to the
nuclear medium, for which we use a simple exponential law. We apply this
procedure to the Brookhaven experiment of Carroll et al and find that it
clearly shows color transparency: the effective attenuation cross section in
events with momentum transfer is approximately $40\ mb\ (2.2\
GeV^2/Q^2)$. The fit to the data also supports the idea that the hard
scattering inside the nuclear medium is closer to perturbative QCD predictions
than is the scattering of isolated protons in free space. We also discuss the
application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request),
report # KU-HEP-92-2
Anisotropic suppression in nuclear collisions
The nuclear overlap zone in non-central relativistic heavy ion collisions is
azimuthally very asymmetric. By varying the angle between the axes of
deformation and the transverse direction of the pair momenta, the suppression
of and will oscillate in a characteristic way. Whereas the
average suppression is mostly sensitive to the early and high density stages of
the collision, the amplitude is more sensitive to the late stages. This effect
provides additional information on the suppression mechanisms such as
direct absorption on participating nucleons, comover absorption or formation of
a quark-gluon plasma. The behavior of the average suppression and its
amplitude with centrality of the collisions is discussed for SPS, RHIC and LHC
energies with and without a phase transition.Comment: Revised and extended version, new figure
- …