263 research outputs found

    Transport theory with self-consistent confinement related to the lattice data

    Get PDF
    The space-time development of a quark-gluon plasma is calculated from a Vlasov equation for the distribution function of quasiparticles with medium dependent masses. At each space-time point the masses are calculated selfconsistently from a gap equation, whose form is determined by the requirement that in thermal equilibrium and for a range of temperatures the energy density of the quasi-particle system is identical to the one from lattice calculations . The numerical solutions of the Vlasov equation display confinement. Relations to effective theories like that by Friedberg Lee and Nambu Jona-Lasinio are established.Comment: 9 pages, 12 figure

    Nonlocal field correlators on the lattice in HP^1 sigma-model

    Get PDF
    Connected two-point field strength correlators have been measured on the lattice in quaternionic projective sigma-model of pure SU(2) Yang-Mills theory. The correlation lengths, extracted from the exponential fit for these correlators, are found to be lambda_1^{-1} = 1.40(3) GeV and lambda^{-1} = 1.51(3) GeV in good agreement with other existing calculations. The dependence of bilocal functions on the connector shape was studied.Comment: 11 pages, 9 figures, to be published in JETP Letter

    Photoelectron Escape Depth and Inelastic Secondaries in High Temperature Superconductors

    Full text link
    We calculate the photoelectron escape depth in the high temperature superconductor Bi2212 by use of electron energy-loss spectroscopy data. We find that the escape depth is only 3 Ang. for photon energies typically used in angle resolved photoemission measurements. We then use this to estimate the number of inelastic secondaries, and find this to be quite small near the Fermi energy. This implies that the large background seen near the Fermi energy in photoemission measurements is of some other origin.Comment: 2 pages, revtex, 3 encapsulated postscript figure

    ARPES on HTSC: simplicity vs. complexity

    Full text link
    A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to redistribution of the spectral weight over the momentum-energy space probed by ARPES. A continued development of the technique had an effect that the picture seen through the ARPES window became clearer and sharper until the complexity of the electronic band structure of the cuprates had been resolved. Now, in an optimal for superconductivity doping range, the cuprates much resemble a normal metal with well predicted electronic structure, though with rather strong electron-electron interaction. This principal disentanglement of the complex physics from complex structure reduced the mystery of HTSC to a tangible problem of interaction responsible for quasi-particle formation. Here we present a short overview of resent ARPES results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN

    A Bound on the Energy Loss of Partons in Nuclei

    Full text link
    We derive a quantum mechanical upper bound on the amount of radiative energy loss suffered by high energy quarks and gluons in nuclear matter. The bound shows that the nuclear suppression observed in quarkonium production at high xFx_F cannot be explained in terms of energy loss of the initial or final parton states. We also argue that no nuclear suppression is expected in the photoproduction of light hadrons at large xFx_F.Comment: 15 pages, 1 figure included as a Postscript file, phyzzx.te

    Geometric Parameterization of J/ΨJ/\Psi Absorption in Heavy Ion Collisions

    Get PDF
    We calculate the survival probability of J/ΨJ/\Psi particles in various colliding systems using a Glauber model. An analysis of recent data has reported a J/ΨJ/\Psi-nucleon breakup cross section of 6.2±\pm0.7 mb derived from an exponential fit to the ratio of J/ΨJ/\Psi to Drell-Yan yields as a function of a simple, linearly-averaged mean path length through the nuclear medium. Our calculations indicate that, due to the nature of the calculation, this approach yields an apparent breakup cross section which is systematically lower than the actual value.Comment: LaTex, 7 pages, 2 figure

    Leading nucleon and inelasticity in hadron-nucleus interactions

    Get PDF
    We present in this paper a calculation of the average proton-nucleus ine- lasticity. Using an Iterative Leading Particle Model and the Glauber model, we relate the leading particle distribution in nucleon-nucleus interactions with the respective one in nucleon-proton collisions. To describe the leading particle distribution in nucleon-proton collisions, we use the Regge-Mueller formalism. To appear in Journal of Physics G.Comment: 11 pages, 2 figure

    Effect of Reducing Atmosphere on the Magnetism of Zn1-xCoxO Nanoparticles

    Full text link
    We report the crystal structure and magnetic properties of Zn1-xCoxO nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in wurtzite ZnO structure after annealing in air and in a forming gas (Ar95%+H5%). The X-ray diffraction and X-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co+2 ions in tetrahedral symmetry, indicating the substitution of Co+2 in ZnO lattice. However samples with x=0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, and that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77K. The essential ingredient in achieving room temperature ferromagnetism in these Zn1-xCoxO nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.Comment: 11 pages, 6 figures, submitted to Nanotechnology IO

    Systematic Analysis Method for Color Transparency Experiments

    Full text link
    We introduce a data analysis procedure for color transparency experiments which is considerably less model dependent than the transparency ratio method. The new method is based on fitting the shape of the A dependence of the nuclear cross section at fixed momentum transfer to determine the effective attenuation cross section for hadrons propagating through the nucleus. The procedure does not require assumptions about the hard scattering rate inside the nuclear medium. Instead, the hard scattering rate is deduced directly from the data. The only theoretical input necessary is in modelling the attenuation due to the nuclear medium, for which we use a simple exponential law. We apply this procedure to the Brookhaven experiment of Carroll et al and find that it clearly shows color transparency: the effective attenuation cross section in events with momentum transfer Q2Q^2 is approximately $40\ mb\ (2.2\ GeV^2/Q^2)$. The fit to the data also supports the idea that the hard scattering inside the nuclear medium is closer to perturbative QCD predictions than is the scattering of isolated protons in free space. We also discuss the application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request), report # KU-HEP-92-2

    Anisotropic J/ΨJ/\Psi suppression in nuclear collisions

    Full text link
    The nuclear overlap zone in non-central relativistic heavy ion collisions is azimuthally very asymmetric. By varying the angle between the axes of deformation and the transverse direction of the pair momenta, the suppression of J/ΨJ/\Psi and Ψ\Psi' will oscillate in a characteristic way. Whereas the average suppression is mostly sensitive to the early and high density stages of the collision, the amplitude is more sensitive to the late stages. This effect provides additional information on the J/ΨJ/\Psi suppression mechanisms such as direct absorption on participating nucleons, comover absorption or formation of a quark-gluon plasma. The behavior of the average J/ΨJ/\Psi suppression and its amplitude with centrality of the collisions is discussed for SPS, RHIC and LHC energies with and without a phase transition.Comment: Revised and extended version, new figure
    corecore