6 research outputs found

    QSAR study of the acute toxicity to fathead minnow based on a large dataset

    No full text
    <p>Acute fathead minnow toxicity is an important basis of hazard and risk assessment for compounds in the aquatic environment. In this paper, a large dataset consisting of 963 organic compounds with acute toxicity towards fathead minnow was studied with a QSAR approach. All molecular structures of compounds were optimized by the hybrid density functional theory method. Dragon molecular descriptors and log <i>K</i><sub>ow</sub> were selected to describe molecular information. Genetic algorithm and multiple linear regression analysis were combined to develop models. A global prediction model for compounds without known mode of action and two local models for organic compounds that exhibit narcosis toxicity and excess toxicity were developed, respectively. For all developed models, internal validations were performed by cross-validation and external validations were implemented by the setting of validation set. In addition, applicability domains of models were evaluated using a leverage method and outliers were listed and checked using toxicological knowledge.</p

    Distribution-free inference of zero-inflated binomial data for longitudinal studies

    No full text
    <div><p>Count responses with structural zeros are very common in medical and psychosocial research, especially in alcohol and HIV research, and the zero-inflated Poisson (ZIP) and zero-inflated negative binomial models are widely used for modeling such outcomes. However, as alcohol drinking outcomes such as days of drinkings are counts within a given period, their distributions are bounded above by an upper limit (total days in the period) and thus inherently follow a binomial or zero-inflated binomial (ZIB) distribution, rather than a Poisson or ZIP distribution, in the presence of structural zeros. In this paper, we develop a new semiparametric approach for modeling ZIB-like count responses for cross-sectional as well as longitudinal data. We illustrate this approach with both simulated and real study data.</p></div

    Multiannual Top-Down Estimate of HFC-23 Emissions in East Asia

    No full text
    Trifluoromethane (CHF<sub>3</sub>, HFC-23), with a 100-year global warming potential (GWP) of 12400, is regulated under the Kyoto Protocol. HFC-23 emissions in East Asia, especially in China, are currently thought to represent the majority of global HFC-23 emissions. This study provides both a bottom-up emission inventory and the multiannual top-down estimate of HFC-23 emissions in East Asia during 2007–2012. The new bottom-up inventory yields improved simulated HFC-23 mixing ratios compared to previous bottom-up inventories. The top-down estimate uses inverse modeling to further improve the model-measurement agreement. Results show that China contributed 94–98% of all HFC-23 emissions in East Asia. Annual a posteriori emissions from China were around 6.3 Gg/yr during the period 2007–2010 after which they increased to 7.1 ± 0.7 Gg/yr in 2011 and 8.8 ± 0.8 Gg/yr in 2012. For the first time, this study also provides a top-down estimate of HFC-23/HCFC-22 (chlorodifluoromethane, CHClF<sub>2</sub>) coproduction ratios in non-CDM (Clean Development Mechanism) HCFC-22 production plants as well as in all HCFC-22 production plants in China

    Origin of the turn-on temperature behavior in WTe2

    No full text
    A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative turn-on temperature behavior: when the applied magnetic field H is above certain value, the resistivity versus temperature ρ(T) curve shows a minimum at a field dependent temperature T∗, which has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. Here, we demonstrate that ρ(T) curves with turn-on behavior in the newly discovered XMR material WTe2 can be scaled as MR∼(H/ρ0)m with m≈2 and ρ0 being the resistivity at zero field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature T∗∼(H-Hc)ν with ν≈1/2, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity ρ∗≈2ρ0 at the onset of the XMR behavior, which fits the data remarkably well. These results exclude the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the low-temperature XMR in WTe2. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials
    corecore