4,616 research outputs found

    Interpreting Magnetic Variance Anisotropy Measurements in the Solar Wind

    Full text link
    The magnetic variance anisotropy (Am\mathcal{A}_m) of the solar wind has been used widely as a method to identify the nature of solar wind turbulent fluctuations; however, a thorough discussion of the meaning and interpretation of the Am\mathcal{A}_m has not appeared in the literature. This paper explores the implications and limitations of using the Am\mathcal{A}_m as a method for constraining the solar wind fluctuation mode composition and presents a more informative method for interpreting spacecraft data. The paper also compares predictions of the Am\mathcal{A}_m from linear theory to nonlinear turbulence simulations and solar wind measurements. In both cases, linear theory compares well and suggests the solar wind for the interval studied is dominantly Alfv\'{e}nic in the inertial and dissipation ranges to scales kρi5k \rho_i \simeq 5.Comment: 15 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Evidence of Critical Balance in Kinetic Alfven Wave Turbulence Simulations

    Full text link
    A numerical simulation of kinetic plasma turbulence is performed to assess the applicability of critical balance to kinetic, dissipation scale turbulence. The analysis is performed in the frequency domain to obviate complications inherent in performing a local analysis of turbulence. A theoretical model of dissipation scale critical balance is constructed and compared to simulation results, and excellent agreement is found. This result constitutes the first evidence of critical balance in a kinetic turbulence simulation and provides evidence of an anisotropic turbulence cascade extending into the dissipation range. We also perform an Eulerian frequency analysis of the simulation data and compare it to the results of a previous study of magnetohydrodynamic turbulence simulations.Comment: 10 pages, 9 figures, accepted for publication in Physics of Plasma

    Validity of the Taylor Hypothesis for Linear Kinetic Waves in the Weakly Collisional Solar Wind

    Full text link
    The interpretation of single-point spacecraft measurements of solar wind turbulence is complicated by the fact that the measurements are made in a frame of reference in relative motion with respect to the turbulent plasma. The Taylor hypothesis---that temporal fluctuations measured by a stationary probe in a rapidly flowing fluid are dominated by the advection of spatial structures in the fluid rest frame---is often assumed to simplify the analysis. But measurements of turbulence in upcoming missions, such as Solar Probe Plus, threaten to violate the Taylor hypothesis, either due to slow flow of the plasma with respect to the spacecraft or to the dispersive nature of the plasma fluctuations at small scales. Assuming that the frequency of the turbulent fluctuations is characterized by the frequency of the linear waves supported by the plasma, we evaluate the validity of the Taylor hypothesis for the linear kinetic wave modes in the weakly collisional solar wind. The analysis predicts that a dissipation range of solar wind turbulence supported by whistler waves is likely to violate the Taylor hypothesis, while one supported by kinetic Alfven waves is not.Comment: 10 pages, 3 figures, Accepted for publication in The Astrophysical Journa

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure
    corecore