1,032 research outputs found

    Compact near-IR and mid-IR cavity ring down spectroscopy device

    Get PDF
    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data

    Laser Heterodyne Radiometer for Sensitive Detection of CO2 and CH4

    Get PDF
    We propose to develop an inexpensive, miniaturized, passive laser heterodyne radiometer (LHR) using commercially available telecommunications laser components to measure two significant carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). This instrument would operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach that supports the Decadal Survey. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In a laser heterodyne radiometer, the weak input signal is light that has undergone absorption by a trace gas. The local oscillator is a laser at a near-by frequency - in this case a low-cost distributed feedback (DFB) telecommunications laser. These two light waves are superimposed in either a beamsplitter or in a fiber coupler (as is the case in this design). The signals are mixed in the detector, and the RF beat frequency is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. A schematic of the progression of the LHR development project is shown in the figure below. At the center (within the dashed line), light from the local oscillator is superimposed upon light that has undergone absorption by a trace gas, in a single mode fiber coupler. Superimposed light is mixed in a fast photoreceiver, and the beat signal is analyzed for changes in absorption. The left portion of the figure depicts a progression of light sources that pass through the trace gas, increasing in complexity in the downward direction. On the right side of the figure, RF signal processing progresses from a commercially available spectrum analyzer to a RF receiver, and finally to an RF filter bank to deconvolute portions of the beat frequency more heavily weighted for different altitudes

    Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (MiniLHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    Get PDF
    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment targe

    A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    Get PDF
    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth measurement. Aerosols induce a radiative effect that is an important modulator of regional carbon cycles. Changes in the diffuse radiative flux fraction (DRF) due to aerosol loading have the potential to alter the terrestrial carbon exchange

    Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Get PDF
    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature, pressure, and species mixing ratios are defined at these boundaries. Between the boundaries, temperature is assumed to vary linearly with altitude while pressure (and thus gas density) vary exponentially. The observed spectrum at the LHR instrument will be the integration of the contributions along this light path. For any absorption measurement the signal at a particular spectral frequency is a linear combination of spectral line contributions from several species. For each species that might absorb in a spectral region, we have pre-calculated its contribution as a function of temperature and pressure. The integrated path absorption spectrum can then by calculated using the initial sun angle (from location, date, and time) and assumptions about pressure and temperature profiles from an atmospheric model. The modeled spectrum is iterated to match the experimental observation using standard multilinear regression techniques. In addition to the layer concentrations, the numerical technique also provides uncertainty estimates for these quantities as well as dependencies on assumptions inherent in the atmospheric models

    Low-Cost Miniaturized Laser Heterodyne Radiometer for Highly Sensitive Detection of CO2 and CH4 in the Atmospheric Column

    Get PDF
    We present a new passive ground-network instrument capable of measuring carbon dioxide (CO2) at 1.57 microns and methane (CH4) at 1.62 microns -- key for validation of OCO-2, ASCENDS, OCO-3, and GOSAT. Designed to piggy-back on an AERONET sun tracker (AERONET is a global network of more than 450 aerosol sensing instruments), this instrument could be rapidly deployed into the established AERONET network of ground sensors. Because aerosols induce a radiative effect that influences terrestrial carbon exchange, this simultaneous measure of aerosols and carbon cycle gases offers a uniquely comprehensive approach. This instrument is a variation of a laser heterodyne radiometer (LHR) that leverages recent advances in telecommunications lasers to miniaturize the instrument (the current version fits in a carry-on suitcase). In this technique, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. By dividing this RF signal into a filter bank, concentrations at different altitudes can be resolved. For a one second integration, we estimate column sensitivities of 0.1 ppmv for CO2, and <1 ppbv for CH4

    Effect of Natriuretic Peptide-Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.

    Get PDF
    Importance: The natriuretic peptides are biochemical markers of heart failure (HF) severity and predictors of adverse outcomes. Smaller studies have evaluated adjusting HF therapy based on natriuretic peptide levels ( guided therapy ) with inconsistent results. Objective: To determine whether an amino-terminal pro-B-type natriuretic peptide (NT-proBNP)-guided treatment strategy improves clinical outcomes vs usual care in high-risk patients with HF and reduced ejection fraction (HFrEF). Design, Settings, and Participants: The Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) study was a randomized multicenter clinical trial conducted between January 16, 2013, and September 20, 2016, at 45 clinical sites in the United States and Canada. This study planned to randomize 1100 patients with HFrEF (ejection fraction ≤40%), elevated natriuretic peptide levels within the prior 30 days, and a history of a prior HF event (HF hospitalization or equivalent) to either an NT-proBNP-guided strategy or usual care. Interventions: Patients were randomized to either an NT-proBNP-guided strategy or usual care. Patients randomized to the guided strategy (n = 446) had HF therapy titrated with the goal of achieving a target NT-proBNP of less than 1000 pg/mL. Patients randomized to usual care (n = 448) had HF care in accordance with published guidelines, with emphasis on titration of proven neurohormonal therapies for HF. Serial measurement of NT-proBNP testing was discouraged in the usual care group. Main Outcomes and Measures: The primary end point was the composite of time-to-first HF hospitalization or cardiovascular mortality. Prespecified secondary end points included all-cause mortality, total hospitalizations for HF, days alive and not hospitalized for cardiovascular reasons, the individual components on the primary end point, and adverse events. Results: The data and safety monitoring board recommended stopping the study for futility when 894 (median age, 63 years; 286 [32%] women) of the planned 1100 patients had been enrolled with follow-up for a median of 15 months. The primary end point occurred in 164 patients (37%) in the biomarker-guided group and 164 patients (37%) in the usual care group (adjusted hazard ratio [HR], 0.98; 95% CI, 0.79-1.22; P = .88). Cardiovascular mortality was 12% (n = 53) in the biomarker-guided group and 13% (n = 57) in the usual care group (HR, 0.94; 95% CI; 0.65-1.37; P = .75). None of the secondary end points nor the decreases in the NT-proBNP levels achieved differed significantly between groups. Conclusions and Relevance: In high-risk patients with HFrEF, a strategy of NT-proBNP-guided therapy was not more effective than a usual care strategy in improving outcomes. Trial Registration: clinicaltrials.gov Identifier: NCT01685840

    Rationale and design of the GUIDE-IT study: Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure.

    Get PDF
    OBJECTIVES: The GUIDE-IT (Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure) study is designed to determine the safety, efficacy, and cost-effectiveness of a strategy of adjusting therapy with the goal of achieving and maintaining a target N-terminal pro-B-type natriuretic peptide (NT-proBNP) level of BACKGROUND: Elevations in natriuretic peptide (NP) levels provide key prognostic information in patients with HF. Therapies proven to improve outcomes in patients with HF are generally associated with decreasing levels of NPs, and observational data show that decreases in NP levels over time are associated with favorable outcomes. Results from smaller prospective, randomized studies of this strategy thus far have been mixed, and current guidelines do not recommend serial measurement of NP levels to guide therapy in patients with HF. METHODS: GUIDE-IT is a prospective, randomized, controlled, unblinded, multicenter clinical trial designed to randomize approximately 1,100 high-risk subjects with systolic HF (left ventricular ejection fraction ≤40%) to either usual care (optimized guideline-recommended therapy) or a strategy of adjusting therapy with the goal of achieving and maintaining a target NT-proBNP level of CONCLUSIONS: The GUIDE-IT study is designed to definitively assess the effects of an NP-guided strategy in high-risk patients with systolic HF on clinically relevant endpoints of mortality, hospitalization, quality of life, and medical resource use. (Guiding Evidence Based Therapy Using Biomarker Intensified Treatment in Heart Failure [GUIDE-IT]; NCT01685840)

    Multiple uncontrolled conditions and blood pressure medication intensification: an observational study

    Get PDF
    Abstract Background Multiple uncontrolled medical conditions may act as competing demands for clinical decision making. We hypothesized that multiple uncontrolled cardiovascular risk factors would decrease blood pressure (BP) medication intensification among uncontrolled hypertensive patients. Methods We observed 946 encounters at two VA primary care clinics from May through August 2006. After each encounter, clinicians recorded BP medication intensification (BP medication was added or titrated). Demographic, clinical, and laboratory information were collected from the medical record. We examined BP medication intensification by presence and control of diabetes and/or hyperlipidemia. 'Uncontrolled' was defined as hemoglobin A1c &#8805; for diabetes, BP &#8805; 140/90 mmHg (&#8805; 130/80 mmHg if diabetes present) for hypertension, and low density lipoprotein cholesterol (LDL-c) &#8805; 130 mg/dl (&#8805; 100 mg/dl if diabetes present) for hyperlipidemia. Hierarchical regression models accounted for patient clustering and adjusted medication intensification for age, systolic BP, and number of medications. Results Among 387 patients with uncontrolled hypertension, 51.4% had diabetes (25.3% were uncontrolled) and 73.4% had hyperlipidemia (22.7% were uncontrolled). The BP medication intensification rate was 34.9% overall, but higher in individuals with uncontrolled diabetes and uncontrolled hyperlipidemia: 52.8% overall and 70.6% if systolic BP &#8805; 10 mmHg above goal. Intensification rates were lowest if diabetes or hyperlipidemia were controlled, lower than if diabetes or hyperlipidemia were not present. Multivariable adjustment yielded similar results. Conclusions The presence of uncontrolled diabetes and hyperlipidemia was associated with more guideline-concordant hypertension care, particularly if BP was far from goal. Efforts to understand and improve BP medication intensification in patients with controlled diabetes and/or hyperlipidemia are warranted.http://deepblue.lib.umich.edu/bitstream/2027.42/78266/1/1748-5908-5-55.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78266/2/1748-5908-5-55.pdfPeer Reviewe

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions
    • …
    corecore