84 research outputs found

    Recovering the chiral critical end-point via delocalization of quark interactions

    Get PDF
    We show that for the lower branch of the quark condensate and values higher than approximately (250MeV)3-(250 \, \mathrm{MeV})^3 the chiral critical end-point in the Nambu--Jona-Lasinio model does not occur in the phase diagram. By using lattice motivated non-local quark interactions, we demonstrate that the critical end-point can be recovered. We study this behavior for a range of condensate values and find that the variation in the position of the critical end-point is more pronounced as the condensate is increased.Comment: title changed, minor changes in text, version to match the one published in PR

    Spin dynamics of the spin-Peierls compound CuGeO_3 under magnetic field

    Full text link
    The magnetic field--driven transition in the spin-Peierls system CuGeO_3 associated with the closing of the spin gap is investigated numerically. The field dependence of the spin dynamical structure factor (seen by inelastic neutron scattering) and of the momentum dependent static susceptibility are calculated. In the dimerized phase (H<H_c), we suggest that the strong field dependence of the transverse susceptibility could be experimentally seen from the low temperature spin-echo relaxation rate 1/T_{2G} or the second moment of the NMR spectrum. Above H_c low energy spin excitations appear at incommensurate wave vectors where the longitudinal susceptibility chi_{zz}(q) peaks.Comment: 4 pages, LaTeX, postscript figures include

    Magnetic Field Effects on Quasiparticles in Strongly Correlated Local Systems

    Full text link
    We show that quasiparticles in a magnetic field of arbitrary strength HH can be described by field dependent parameters. We illustrate this approach in the case of an Anderson impurity model and use the numerical renormalization group (NRG) to calculate the renormalized parameters for the levels with spin σ\sigma, ϵ~d,σ(H)\tilde\epsilon_{\mathrm{d},\sigma}(H), resonance width Δ~(H)\tilde\Delta(H) and the effective local quasiparticle interaction U~(H)\tilde U(H). In the Kondo or strong correlation limit of the model the progressive de-renormalization of the quasiparticles can be followed as the magnetic field is increased. The low temperature behaviour, including the conductivity, in arbitrary magnetic field can be calculated in terms of the field dependent parameters using the renormalized perturbation expansion. Using the NRG the field dependence of the spectral density on higher scales is also calculated.Comment: 15 pages, 17 figure

    Endemic fish calling: Acoustics and reproductive behaviour of the Neretva dwarf goby Orsinigobius croaticus

    Get PDF
    The Neretva dwarf goby Orsinigobius croaticus (Gobiiformes, Gobionellidae) is an endemic fish native to the freshwaters of the Adriatic Basin in Croatia and Bosnia and Herzegovina, a Mediterranean Biodiversity Hotspot. Due to its limited distribution range, specific karst habitat and endangered status, laboratory studies on reproductive biology are scarce but crucial. Herein, we investigated the sound production and acoustic behaviour of the endangered O. croaticus during reproductive intersexual laboratory encounters, utilising an interdisciplinary approach. We also performed dissections and micro-computed tomography (μCT) scanning of the pectoral girdle to explore its potential involvement in sound production. Finally, comparative acoustic analysis was conducted on sounds produced by previously recorded soniferous sand gobies to investigate whether acoustic features are species-specific. The endemic O. croaticus is a soniferous species. Males of this species emit pulsatile sounds composed of a variable number of short (~15 ms) consecutive pulses when interacting with females, usually during the pre-spawning phase in the nest, but also during courtship outside the nest. Pulsatile sounds were low-frequency and short pulse trains (~140 Hz, &lt;1000 ms). Male visual behaviour rate was higher when co-occurring with sounds and females entered the male's nest significantly more frequently when sounds were present. Characteristic body movements accompanied male sound production, such as head thrust and fin spreading. Furthermore, μCT scans and dissections suggest that O. croaticus shares certain anatomical similarities of the pectoral girdle (i.e. osseous elements and arrangement of levator pectoralis muscles) to previously studied sand gobies that could be involved in sound production. Multivariate comparisons, using sounds produced by eight soniferous European sand gobies, effectively distinguished soniferous (and sympatric) species based on their acoustic properties. However, the discrimination success decreased when temperature-dependent features (sound duration and pulse repetition rate) were excluded from the analysis. Therefore, we suggest both spectral and temporal features are important for the acoustic differentiation of sand gobies

    Multiple Magnon Modes and Consequences for the Bose-Einstein Condensed Phase in BaCuSi2O6

    Full text link
    The compound BaCuSi2O6 is a quantum magnet with antiferromagnetic dimers of S = 1/2 moments on a quasi-2D square lattice. We have investigated its spin dynamics by inelastic neutron scattering experiments on single crystals with an energy resolution considerably higher than in an earlier study. We observe multiple magnon modes, indicating clearly the presence of magnetically inequivalent dimer sites. This more complex spin Hamiltonian leads to a distinct form of magnon Bose-Einstein condensate (BEC) phase with a spatially modulated condensate amplitude.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Dynamic susceptibilities of the single impurity Anderson model within an enhanced non-crossing approximation

    Full text link
    The single impurity Anderson model (SIAM) is studied within an enhanced non-crossing approximation (ENCA). This method is extended to the calculation of susceptibilities and thoroughly tested, also in order to prepare applications as a building block for the calculation of susceptibilities and phase transitions in correlated lattice systems. A wide range of model parameters, such as impurity occupancy, temperature, local Coulomb repulsion and hybridization strength, are studied. Results for the spin and charge susceptibilities are presented. By comparing the static quantities to exact Bethe ansatz results, it is shown that the description of the magnetic excitations of the impurity within the ENCA is excellent, even in situations with large valence fluctuations or vanishing Coulomb repulsion. The description of the charge susceptibility is quite accurate in situations where the singly occupied ionic configuration is the unperturbed ground state; however, it seems to overestimate charge fluctuations in the asymmetric model at too low temperatures. The dynamic spin excitation spectra is dominated by the Kondo-screening of the impurity spin through the conduction band, i.e. the formation of the local Kondo-singlet. A finite local Coulomb interaction U leads to a drastic reduction of the charge response via processes involving the doubly occupied impurity state. In the asymmetric model, the charge susceptibility is enhanced for excitation energies smaller than the Kondo scale T_K due to the influence of valence fluctuations.Comment: 16 pages, 13 figure

    Cu(2) nuclear resonance evidence for an original magnetic phase in aged 60K-superconductors RBa2Cu3O6+x (R=Tm,Y)

    Full text link
    It is widely believed that the long-range antiferromagnetic order in the RBa2Cu3O6+x compounds (R=Y and rare earths except of Ce, Pr, Tb) is totally suppressed for the oxygen index x>0.4 (AFM insulator-metal transition). We present the results of the copper NQR/NMR studies of aged RBa2Cu3O6+x (R=Tm,Y) samples showing that a magnetic order can still be present at oxygen contents x up to at least 0.7 and at temperatures as high as 77K.Comment: 7 pages, 6 figures. Submitted to Phys.Rev.

    Size-dependent standard deviation for growth rates: empirical results and theoretical modeling

    Get PDF
    We study annual logarithmic growth rates R of various economic variables such as exports, imports, and foreign debt. For each of these variables we find that the distributions of R can be approximated by double exponential (Laplace) distributions in the central parts and power-law distributions in the tails. For each of these variables we further find a power-law dependence of the standard deviation σ(R) on the average size of the economic variable with a scaling exponent surprisingly close to that found for the gross domestic product (GDP) [Phys. Rev. Lett. 81, 3275 (1998)]. By analyzing annual logarithmic growth rates R of wages of 161 different occupations, we find a power-law dependence of the standard deviation σ(R) on the average value of the wages with a scaling exponent β≈0.14 close to those found for the growth of exports, imports, debt, and the growth of the GDP. In contrast to these findings, we observe for payroll data collected from 50 states of the USA that the standard deviation σ(R) of the annual logarithmic growth rate R increases monotonically with the average value of payroll. However, also in this case we observe a power-law dependence of σ(R) on the average payroll with a scaling exponent β≈−0.08. Based on these observations we propose a stochastic process for multiple cross-correlated variables where for each variable (i) the distribution of logarithmic growth rates decays exponentially in the central part, (ii) the distribution of the logarithmic growth rate decays algebraically in the far tails, and (iii) the standard deviation of the logarithmic growth rate depends algebraically on the average size of the stochastic variable

    Possible Localized Modes in the Uniform Quantum Heisenberg Chains of Sr2CuO3

    Full text link
    A model of mobile-bond defects is tentatively proposed to analyze the "anomalies" observed on the NMR spectrum of the quantum Heisenberg chains of Sr2CuO3. A bond-defect is a local change in the exchange coupling. It results in a local alternating magnetization (LAM), which when the defect moves, creates a flipping process of the local field seen by each nuclear spin. At low temperature, when the overlap of the LAM becomes large, the defects form a periodic structure, which extends over almost all the chains. In that regime, the density of bond-defects decreases linearly with T.Comment: 4 pages + 3 figures. To appear in Physical Review
    corecore