759 research outputs found

    Military markets for solar thermal electric power systems

    Get PDF
    The Department of Defense maintains an inventory of over 1,800 MW of engine-generators 15 KW and larger, with an estimated procurement rate of over 140 MW/year. Nearly the entire requirement could be met by advanced heat engines of the types being developed as point-focussing, distributed receiver power plants. A conceptual system consisting of a heat engine which efficiently burns liquid fossil or synthetic fuels, with a 'solarization kit' for conversion to hybrid solar operation could meet existing DOD requirements for new systems which are quieter, lighter, and multi-fueled. An estimated 24 percent (33 MW/year) or more could operationally benefit from the solar option. Baseline cost projections indicate levelized energy cost goals of 210 to 120 mills/KWh (15 to 1000 KW systems). Fuel cost escalation is the major factor affecting the value of the solar option. A baseline calculation for fuel at 0.59/galinspring,1979,escalatingat8percentabovegeneralinflationindicatesavalueof0.59/gal in spring, 1979, escalating at 8 percent above general inflation indicates a value of 2700/KWe for a solarization kit

    USAF solar thermal applications overview

    Get PDF
    Process heat applications were compared to solar thermal technologies. The generic process heat applications were analyzed for solar thermal technology utilization, using SERI's PROSYS/ECONOMAT model in an end use matching analysis and a separate analysis was made for solar ponds. Solar technologies appear attractive in a large number of applications. Low temperature applications at sites with high insolation and high fuel costs were found to be most attractive. No one solar thermal technology emerges as a clearly universal or preferred technology, however,, solar ponds offer a potential high payoff in a few, selected applications. It was shown that troughs and flat plate systems are cost effective in a large number of applications

    A Fresnel collector process heat experiment at Capitol Concrete Products

    Get PDF
    An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability

    Liquid-Gas Phase Transition in Nuclear Equation of State

    Get PDF
    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.Comment: 12 pages in Revtex including two Postscript figure

    Soliton microcomb based spectral domain optical coherence tomography

    Full text link
    Spectral domain optical coherence tomography (SD-OCT) is a widely used and minimally invaive technique for bio-medical imaging [1]. SD-OCT typically relies on the use of superluminescent diodes (SLD), which provide a low-noise and broadband optical spectrum. Recent advances in photonic chipscale frequency combs [2, 3] based on soliton formation in photonic integrated microresonators provide an chipscale alternative illumination scheme for SD-OCT. Yet to date, the use of such soliton microcombs in OCT has not yet been analyzed. Here we explore the use of soliton microcombs in spectral domain OCT and show that, by using photonic chipscale Si3N4 resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial SLDs are possible. We demonstrate that the soliton states in microresonators exhibit a noise floor that is ca. 3 dB lower than for the SLD at identical power, but can exhibit significantly lower noise performance for powers at the milliWatt level. We perform SD-OCT imaging on an ex vivo fixed mouse brain tissue using the soliton microcomb, alongside an SLD for comparison, and demonstrate the principle viability of soliton based SD-OCT. Importantly, we demonstrate that classical amplitude noise of all soliton comb teeth are correlated, i.e. common mode, in contrast to SLD or incoherent microcomb states [4], which should, in theory, improve the image quality. Moreover, we demonstrate the potential for circular ranging, i.e. optical sub-sampling [5, 6], due to the high coherence and temporal periodicity of the soliton state. Taken together, our work indicates the promising properties of soliton microcombs for SD-OCT

    Web Browsing Behavior Analysis and Interactive Hypervideo

    Full text link
    © ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in, ACM Transactions on the Web, Vol. 7, No. 4, Article 20, Publication date: October 2013.http://doi.acm.org/ 10.1145/2529995.2529996[EN] Processing data on any sort of user interaction is well known to be cumbersome and mostly time consuming. In order to assist researchers in easily inspecting fine-grained browsing data, current tools usually display user interactions as mouse cursor tracks, a video-like visualization scheme. However, to date, traditional online video inspection has not explored the full capabilities of hypermedia and interactive techniques. In response to this need, we have developed SMT 2ǫ, a Web-based tracking system for analyzing browsing behavior using feature-rich hypervideo visualizations. We compare our system to related work in academia and the industry, showing that ours features unprecedented visualization capabilities. We also show that SMT 2ǫ efficiently captures browsing data and is perceived by users to be both helpful and usable. A series of prediction experiments illustrate that raw cursor data are accessible and can be easily handled, providing evidence that the data can be used to construct and verify research hypotheses. Considering its limitations, it is our hope that SMT 2ǫ will assist researchers, usability practitioners, and other professionals interested in understanding how users browse the Web.This work was partially supported by the MIPRCV Consolider Ingenio 2010 program (CSD2007-00018) and the TIN2009-14103-C03-03 project. It is also supported by the 7th Framework Program of the European Commision (FP7/2007-13) under grant agreement No. 287576 (CasMaCat).Leiva Torres, LA.; Vivó Hernando, RA. (2013). Web Browsing Behavior Analysis and Interactive Hypervideo. ACM Transactions on the Web. 7(4):20:1-20:28. https://doi.org/10.1145/2529995.2529996S20:120:287

    A high-precision polarimeter

    Full text link
    We have built a polarimeter in order to measure the electron beam polarization in hall C at JLAB. Using a superconducting solenoid to drive the pure-iron target foil into saturation, and a symmetrical setup to detect the Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    An investigation of standard thermodynamic quantities as determined via models of nuclear multifragmentation

    Get PDF
    Both simple and sophisticated models are frequently used in an attempt to understand how real nuclei breakup when subjected to large excitation energies, a process known as nuclear multifragmentation. Many of these models assume equilibriumthermodynamics and produce results often interpreted as evidence of a phase transition. This work examines one class of models and employs standard thermodynamical procedure to explore the possible existence and nature of a phase transition. The role of various terms, e.g. Coulomb and surface energy, is discussed.Comment: 19 two-column format pages with 24 figure

    Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory

    Get PDF
    The equation of state (EOS) of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the non-linear σωρ\sigma-\omega -\rho model. The caloric curves are calculated by confining the nuclei in the freeze-out volume taken to be a sphere of size about 4 to 8 times the normal nuclear volume. The results obtained from the relativistic theory are not significantly different from those obtained earlier in a non-relativistic framework. The nature of the EOS and the peaked structure of the specific heat CvC_v obtained from the caloric curves show clear signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the entropy at constant pressure indicate that the characteristics of the transition are not too different from the first-order one.Comment: RevTex file(19 pages) and 12 psfiles for fugures. Physical Review C (in Press
    corecore