138 research outputs found

    Testing the well-posedness of characteristic evolution of scalar waves

    Get PDF
    Recent results have revealed a critical way in which lower order terms affect the well-posedness of the characteristic initial value problem for the scalar wave equation. The proper choice of such terms can make the Cauchy problem for scalar waves well posed even on a background spacetime with closed lightlike curves. These results provide new guidance for developing stable characteristic evolution algorithms. In this regard, we present here the finite difference version of these recent results and implement them in a stable evolution code. We describe test results which validate the code and exhibit some of the interesting features due to the lower order terms.Comment: 22 pages, 15 figures Submitted to CQ

    Problems which are well-posed in the generalized sense with applications to the Einstein equations

    Get PDF
    In the harmonic description of general relativity, the principle part of Einstein equations reduces to a constrained system of 10 curved space wave equations for the components of the space-time metric. We use the pseudo-differential theory of systems which are well-posed in the generalized sense to establish the well-posedness of constraint preserving boundary conditions for this system when treated in second order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation

    Boundary conditions for coupled quasilinear wave equations with application to isolated systems

    Get PDF
    We consider the initial-boundary value problem for systems of quasilinear wave equations on domains of the form [0,T]×Σ[0,T] \times \Sigma, where Σ\Sigma is a compact manifold with smooth boundaries ∂Σ\partial\Sigma. By using an appropriate reduction to a first order symmetric hyperbolic system with maximal dissipative boundary conditions, well posedness of such problems is established for a large class of boundary conditions on ∂Σ\partial\Sigma. We show that our class of boundary conditions is sufficiently general to allow for a well posed formulation for different wave problems in the presence of constraints and artificial, nonreflecting boundaries, including Maxwell's equations in the Lorentz gauge and Einstein's gravitational equations in harmonic coordinates. Our results should also be useful for obtaining stable finite-difference discretizations for such problems.Comment: 22 pages, no figure

    Problems which are well-posed in the generalized sense with applications to the Einstein equations

    Get PDF
    In the harmonic description of general relativity, the principle part of Einstein equations reduces to a constrained system of 10 curved space wave equations for the components of the space-time metric. We use the pseudo-differential theory of systems which are well-posed in the generalized sense to establish the well-posedness of constraint preserving boundary conditions for this system when treated in second order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation

    Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates

    Get PDF
    In recent work, we used pseudo-differential theory to establish conditions that the initial-boundary value problem for second order systems of wave equations be strongly well-posed in a generalized sense. The applications included the harmonic version of the Einstein equations. Here we show that these results can also be obtained via standard energy estimates, thus establishing strong well-posedness of the harmonic Einstein problem in the classical sense.Comment: More explanatory material and title, as will appear in the published article in Classical and Quantum Gravit

    Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations

    Get PDF
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A new formulation of constraint-preserving boundary conditions of the Sommerfeld type for such systems has recently been proposed. We implement these boundary conditions in a nonlinear 3D evolution code and test their accuracy.Comment: 16 pages, 17 figures, submitted to Phys. Rev.

    Problems which are well-posed in a generalized sense with applications to the Einstein equations

    Full text link
    In the harmonic description of general relativity, the principle part of Einstein equations reduces to a constrained system of 10 curved space wave equations for the components of the space-time metric. We use the pseudo-differential theory of systems which are well-posed in the generalized sense to establish the well-posedness of constraint preserving boundary conditions for this system when treated in second order differential form. The boundary conditions are of a generalized Sommerfeld type that is benevolent for numerical calculation.Comment: Final version to appear in Classical and Qunatum Gravit

    Constraint-preserving Sommerfeld conditions for the harmonic Einstein equations

    No full text
    The principle part of Einstein equations in the harmonic gauge consists of a constrained system of 10 curved space wave equations for the components of the space-time metric. A new formulation of constraint-preserving boundary conditions of the Sommerfeld type for such systems has recently been proposed. We implement these boundary conditions in a nonlinear 3D evolution code and test their accuracy

    Complete null data for a black hole collision

    Get PDF
    We present an algorithm for calculating the complete data on an event horizon which constitute the necessary input for characteristic evolution of the exterior spacetime. We apply this algorithm to study the intrinsic and extrinsic geometry of a binary black hole event horizon, constructing a sequence of binary black hole event horizons which approaches a single Schwarzschild black hole horizon as a limiting case. The linear perturbation of the Schwarzschild horizon provides global insight into the close limit for binary black holes, in which the individual holes have joined in the infinite past. In general there is a division of the horizon into interior and exterior regions, analogous to the division of the Schwarzschild horizon by the r=2M bifurcation sphere. In passing from the perturbative to the strongly nonlinear regime there is a transition in which the individual black holes persist in the exterior portion of the horizon. The algorithm is intended to provide the data sets for production of a catalog of nonlinear post-merger wave forms using the PITT null code.Comment: Revised version, to appear in Phys. Rev. D. July 15 (2001), 41 pages, 11 figures, RevTeX/epsf/psfi
    • …
    corecore