959 research outputs found

    Searching for reflected light from τ\tau Bootis b with high-resolution ground-based spectroscopy: Approaching the 10−510^{-5} contrast barrier

    Get PDF
    It is challenging to measure the starlight reflected from exoplanets because of the extreme contrast with their host stars. For hot Jupiters, this contrast is in the range of 10−610^{-6} to 10−410^{-4}, depending on their albedo, radius and orbital distance. Searches for reflected light have been performed since the first hot Jupiters were discovered, but with very limited success because hot Jupiters tend to have low albedo values due to the general absence of reflective cloud decks. The aim of this study is to search for reflected light from τ\tau Boo b, a hot Jupiter with one of the brightest host stars. Since its discovery in 1997, it has been the subject of several reflected-light searches using high-dispersion spectroscopy. Here we aim to combine these data in to a single meta-analysis. We analysed more than 2,000 archival high-dispersion spectra obtained with the UVES, ESPaDOnS, NARVAL UES and HARPS-N spectrographs during various epochs between 1998 and 2013. Each spectrum was first cleaned of the stellar spectrum and subsequently cross-correlated with a PHOENIX model spectrum. These were then Doppler shifted to the planet rest-frame and co-added in time, weighted according to the expected signal-to-noise of the planet signal. We reach a 3σ\sigma upper limit of the planet to star contrast of 1.5×10−51.5 \times 10^{-5}. Assuming a planet radius of 1.15 RJR_J, this corresponds to an optical albedo of 0.12 between 400-700 nm. This low albedo is in line with secondary eclipse and phase curve observations of other hot Jupiters using space-based observatories, as well as theoretical predictions of their reflective properties.Comment: 15 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    Molecule mapping of HR8799b using OSIRIS on Keck: Strong detection of water and carbon monoxide, but no methane

    Full text link
    Context. In 2015, Barman et al. (ApJ, 804, 61) presented detections of absorption from water, carbon monoxide, and methane in the atmosphere of the directly imaged exoplanet HR8799b using integral field spectroscopy (IFS) with OSIRIS on the Keck II telescope. We recently devised a new method to analyse IFU data, called molecule mapping, searching for high-frequency signatures of particular molecules in an IFU data cube. Aims. The aim of this paper is to use the molecule mapping technique to search for the previously detected spectral signatures in HR8799b using the same data, allowing a comparison of molecule mapping with previous methods. Methods. The medium-resolution H- and K-band pipeline-reduced archival data were retrieved from the Keck archive facility. Telluric and stellar lines were removed from each spectrum in the data cube, after which the residuals were cross-correlated with model spectra of carbon monoxide, water, and methane. Results. Both carbon monoxide and water are clearly detected at high signal-to-noise, however, methane is not retrieved. Conclusions. Molecule mapping works very well on the OSIRIS data of exoplanet HR8799b. However, it is not evident why methane is detected in the original analysis, but not with the molecule mapping technique. Possible causes could be the presence of telluric residuals, different spectral filtering techniques, or the use of different methane models. We do note that in the original analysis methane was only detected in the K-band, while the H-band methane signal could be expected to be comparably strong. More sensitive observations with the JWST will be capable of confirming or disproving the presence of methane in this planet at high confidence.Comment: 5 pages, 5 figures and 2 tables, accepted by A&

    Isolation and characterization of kinetoplast DNA from bloodstream form of Trypanosoma brucei

    Get PDF
    We have used restriction endonucleases PstI, EcoRI, HapII, HhaI, and S1 nuclease to demonstrate the presence of a large complex component, the maxi-circle, in addition to the major mini-circle component in kinetoplast DNA (kDNA) networks of Trypanosoma brucei (East African Trypanosomiasis Research Organization [EATRO] 427). Endonuclease PstI and S1 nuclease cut the maxi-circle at a single site, allowing its isolation in a linear form with a mol wt of 12.2 x 10(6), determined by electron microscopy. The other enzymes give multiple maxi-circle fragments, whose added mol wt is 12-13 x 10(6), determined by gel electrophoresis. The maxi-circle in another T. brucei isolate (EATRO 1125) yields similar fragments but appears to contain a deletion of about 0.7 x 10(6) daltons. Electron microscopy of kDNA shows the presence of DNA considerably longer than the mini-circle contour length (0.3 micron) either in the network or as loops extending from the edge. This long DNA never exceeds the maxi-circle length (6.3 microns) and is completely removed by digestion with endonuclease PstI. 5-10% of the networks are doublets with up to 40 loops of DNA clustered between the two halves of the mini-circle network and probably represent a division stage of the kDNA. Digestion with PstI selectively removes these loops without markedly altering the mini-circle network. We conclude that the long DNA in both single and double networks represents maxi-circles and that long tandemly repeated oligomers of mini-circles are (virtually) absent. kDNA from Trypanosoma equiperdum, a trypanosome species incapable of synthesizing a fully functional mitochondrion, contains single and double networks of dimensions similar to those from T. brucei but without any DNA longer than mini-circle contour length. We conclude that the maxi-circle of trypanosomes is the genetic equivalent of the mitochondrial DNA (mtDNA) of other organisms

    Numerical investigation aerodynamics nacelle-strake effect

    Get PDF
    The focus of this investigation is on the numerical prediction of the nacelle-strake effect on the lift coefficient for transport aircraft in high-lift configurations, i.e. the configurations used in the EUROLIFT II project. Within this project high-Reynolds-number wind-tunnel tests were conducted in the European Transonic Windtunnel (ETW) from 2004 to 2007. The geometry considered, also considered in the present investigation, was a commercial wide-body twin-jet high-lift configuration with flaps and slats in landing configuration. The wind-tunnel model considered is a wing/fuselage configuration with a high bypass ratio through-flow-nacelle with a core body. The complexity of the wind-tunnel model was increased in three successive stages. The final stage III geometry features a nacelle strake on the nacelle inboard surface to optimize the performance of the high-lift configuration. The applied CFD methods include the usage of hexahedral elements in regions of vortical flow, a RSM-g turbulence model and a version of the dissipation model in terms of Scalar and Matrix dissipation with various coefficients. Analysis of the results of the performed computations show that for the present configuration, the nacelle strake effect on maximum lift coefficient can be captured with high accuracy by using steady-flow computations and the CFD practices outlined in this paper

    The Peculiar Atmospheric Chemistry of KELT-9b

    Get PDF
    The atmospheric temperatures of the ultra-hot Jupiter KELT-9b straddle the transition between gas giants and stars, and therefore between two traditionally distinct regimes of atmospheric chemistry. Previous theoretical studies assume the atmosphere of KELT-9b to be in chemical equilibrium. Despite the high ultraviolet flux from KELT-9, we show using photochemical kinetics calculations that the observable atmosphere of KELT-9b is predicted to be close to chemical equilibrium, which greatly simplifies any theoretical interpretation of its spectra. It also makes the atmosphere of KELT-9b, which is expected to be cloudfree, a tightly constrained chemical system that lends itself to a clean set of theoretical predictions. Due to the lower pressures probed in transmission (compared to emission) spectroscopy, we predict the abundance of water to vary by several orders of magnitude across the atmospheric limb depending on temperature, which makes water a sensitive thermometer. Carbon monoxide is predicted to be the dominant molecule under a wide range of scenarios, rendering it a robust diagnostic of the metallicity when analyzed in tandem with water. All of the other usual suspects (acetylene, ammonia, carbon dioxide, hydrogen cyanide, methane) are predicted to be subdominant at solar metallicity, while atomic oxygen, iron and magnesium are predicted to have relative abundances as high as 1 part in 10,000. Neutral atomic iron is predicted to be seen through a forest of optical and near-infrared lines, which makes KELT-9b suitable for high-resolution ground-based spectroscopy with HARPS-N or CARMENES. We summarize future observational prospects of characterizing the atmosphere of KELT-9b.Comment: Accepted by ApJ. 9 pages, 6 figures. Corrected minor errors in Figures 1a and 1b (some line styles were switched by accident), text and conclusions unchanged, these minor changes will be updated in final ApJ proo

    Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e

    Get PDF
    [Abridged] The aim of this work is to search for an absorption signal from exospheric sodium (Na) and singly ionized calcium (Ca+^+) in the optical transmission spectrum of the hot rocky super-Earth 55 Cancri e. Although the current best-fitting models to the planet mass and radius require a possible atmospheric component, uncertainties in the radius exist, making it possible that 55 Cancri e could be a hot rocky planet without an atmosphere. High resolution (R∼\sim110000) time-series spectra of five transits of 55 Cancri e, obtained with three different telescopes (UVES/VLT, HARPS/ESO 3.6m & HARPS-N/TNG) were analysed. Targeting the sodium D lines and the calcium H and K lines, the potential planet exospheric signal was filtered out from the much stronger stellar and telluric signals, making use of the change of the radial component of the orbital velocity of the planet over the transit from -57 to +57 km/sec. Combining all five transit data sets, we detect a signal potentially associated with sodium in the planet exosphere at a statistical significance level of 3σ\sigma. Combining the four HARPS transits that cover the calcium H and K lines, we also find a potential signal from ionized calcium (4.1 σ\sigma). Interestingly, this latter signal originates from just one of the transit measurements - with a 4.9σ\sigma detection at this epoch. Unfortunately, due to the low significance of the measured sodium signal and the potentially variable Ca+^+ signal, we estimate the p-values of these signals to be too high (corresponding to <4σ\sigma) to claim unambiguous exospheric detections. By comparing the observed signals with artificial signals injected early in the analysis, the absorption by Na and Ca+^+ are estimated to be at a level of approximately 2.3×10−3\times 10^{-3} and 7.0×10−2\times 10^{-2} respectively, relative to the stellar spectrum.Comment: 15 pages, 8 figures, submission updated after English language editing, submission updated to correct a mistaken cross-reference noticed in A&A proo

    A spectral survey of an ultra-hot Jupiter: Detection of metals in the transmission spectrum of KELT-9 b

    Get PDF
    Context: KELT-9 b exemplifies a newly emerging class of short-period gaseous exoplanets that tend to orbit hot, early type stars - termed ultra-hot Jupiters. The severe stellar irradiation heats their atmospheres to temperatures of ∼4,000\sim 4,000 K, similar to the photospheres of dwarf stars. Due to the absence of aerosols and complex molecular chemistry at such temperatures, these planets offer the potential of detailed chemical characterisation through transit and day-side spectroscopy. Studies of their chemical inventories may provide crucial constraints on their formation process and evolution history. Aims: To search the optical transmission spectrum of KELT-9 b for absorption lines by metals using the cross-correlation technique. Methods: We analyse 2 transits observed with the HARPS-N spectrograph. We use an isothermal equilibrium chemistry model to predict the transmission spectrum for each of the neutral and singly-ionized atoms with atomic numbers between 3 and 78. Of these, we identify the elements that are expected to have spectral lines in the visible wavelength range and use those as cross-correlation templates. Results: We detect absorption of Na I, Cr II, Sc II and Y II, and confirm previous detections of Mg I, Fe I, Fe II and Ti II. In addition, we find evidence of Ca I, Cr I, Co I, and Sr II that will require further observations to verify. The detected absorption lines are significantly deeper than model predictions, suggesting that material is transported to higher altitudes where the density is enhanced compared to a hydrostatic profile. There appears to be no significant blue-shift of the absorption spectrum due to a net day-to-night side wind. In particular, the strong Fe II feature is shifted by 0.18±0.270.18 \pm 0.27 km~s−1^{-1}, consistent with zero. Using the orbital velocity of the planet we revise the steller and planetary masses and radii.Comment: Submitted to Astronomy and Astrophysics on January 18, 2019. Accepted on May 3, 2019. 26 pages, 11 figure

    Reduction in mesenchymal stem cell numbers in premature aging DNA repair deficient TTD mice

    Get PDF
    Background: Mice carrying mutations in DNA repair genes often show signs of accelerated ageing and therefore can be used as a model system to study age related diseases like osteoporosis. It has been shown that TTD mice, carrying a mutation in the nucleotide excision repair gene XPD (xeroderma pigmentosa group D), display features of ageing related osteoporosis as well as adipose tissue hypoplasia. Since both cell types involved, osteoblasts as well as adipocytes, arise from the same mesenchymal stem cell population, the aim of the current project was to study the number, proliferation and differentiation potential of these cells in TTD compared to wild type (WT) mice. This might provide us with useful information concerning the mechanism behind age-related osteoporosis and the loss of adipose tissue.Methods: Bone marrow from old TTD and WT mice was cultured under osteogenic or adipogenic conditions and analysed for alkaline phosphatase activity (ALP), mineralisation (osteoblast) and lipid deposition (adipocyte).Results: Under osteogenic conditions the number of ALP-positive colonies after 9 and 14 days of culture was significantly decreased (p=0.02) in TTD compared to WT mice. The rate at which new ALP-positive colonies are formed between day 9 and day 14 of culture has not changed between TTD and WT mice, indicating that the decrease in colony number is not due to a delay in differentiation. Mineralisation of ALP-positive colonies did not seem to be affected, with a borderline significant decrease on day 14 at the onset of mineralisation but no significant changes on day 21 of culture. Lipid deposition was strongly reduced in TTD compared to WT mice (p=0.01) after 35 days of culture.Conclusions: The observed reduction in osteoblast and adipocyte differentiation indicates a reduction of mesenchymal stem cell numbers in TTD mice. This reduction in mesenchymal stem cell numbers and the corresponding decline in osteoblast differentiation could explain the premature osteoporotic features observed in TTD mice. In line with this, the reduction of mesenchymal stem cells and adipocyte differentiation may underlie the adipose tissue hypoplasia observed in TTD mice
    • …
    corecore