6,768 research outputs found

    Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate

    Get PDF
    We describe the quantum state of a Bose-Einstein condensate at zero temperature. By evaluating the Q-function we show that the ground state of Bose-Einstein condensate under the Hartree approximation is squeezed. We find that multimode Schroedinger cat states are generated as the condensate evolves in a ballistic expansion.Comment: 13 pages, 6 figure

    Precision measurement with an optical Josephson junction

    Get PDF
    We study a new type of Josephson device, the so-called "optical Josephson junction" as proposed in Phys. Rev. Lett. {\bf 95}, 170402 (2005). Two condensates are optically coupled through a waveguide by a pair of Bragg beams. This optical Josephson junction is analogous to the usual Josephson junction of two condensates weakly coupled via tunneling. We discuss the use of this optical Josephson junction, for making precision measurements.Comment: 6 pages, 1 figur

    Coagulation kinetics beyond mean field theory using an optimised Poisson representation

    Get PDF
    Binary particle coagulation can be modelled as the repeated random process of the combination of two particles to form a third. The kinetics can be represented by population rate equations based on a mean field assumption, according to which the rate of aggregation is taken to be proportional to the product of the mean populations of the two participants. This can be a poor approximation when the mean populations are small. However, using the Poisson representation it is possible to derive a set of rate equations that go beyond mean field theory, describing pseudo-populations that are continuous, noisy and complex, but where averaging over the noise and initial conditions gives the mean of the physical population. Such an approach is explored for the simple case of a size-independent rate of coagulation between particles. Analytical results are compared with numerical computations and with results derived by other means. In the numerical work we encounter instabilities that can be eliminated using a suitable 'gauge' transformation of the problem [P. D. Drummond, Eur. Phys. J. B38, 617 (2004)] which we show to be equivalent to the application of the Cameron-Martin-Girsanov formula describing a shift in a probability measure. The cost of such a procedure is to introduce additional statistical noise into the numerical results, but we identify an optimised gauge transformation where this difficulty is minimal for the main properties of interest. For more complicated systems, such an approach is likely to be computationally cheaper than Monte Carlo simulation

    EBSD mapping of herringbone domain structures in tetragonal piezoelectrics

    Get PDF
    Herringbone domain structures have been mapped using electron backscatter diffraction (EBSD) in two tetragonal piezoelectrics, lead zirconate titanate, [Pb(Zr,Ti)O<sub>3</sub>] and bismuth ferrite – lead titanate, [(PbTi)<sub>0.5</sub>(BiFe)<sub>0.5</sub>O<sub>3</sub>]. Analysis of the domain misorientations across the band junctions shows that the structures correspond very well to crystallographic models. High resolution mapping with a 20 nm step size allowed the crystal rotation across one of these band junctions in lead zirconate titanate to be studied in detail and allowed an improved estimation of the peak strain at the junction, of 0.56 GPa. The significance of this for crack nucleation and propagation in such materials is discussed

    The relative isotopic abundance of K^(40) in terrestrial and meteoritic samples

    Get PDF
    Fowler, Greenstein, and Hoyle have proposed that the inner solar system was heavily irradiated during its formation. A consequence of this proposal is that sizable differences in meteoritic and terrestrial K^(41)/K^(40) ratios are possible if the fraction of material which was irradiated was different in the two cases. The isotopic composition of potassium was measured by mass spectrometry for nine stone meteorites, silicate from the Vaca Muerta mesosiderite and the Weekeroo Station iron meteorite, and four terrestrial samples. The measured K^(41)/K^(40) ratios were corrected by normalizing the measured K^(39)/K^(41) ratio to the Nier value of 13.47. This normalization procedure approximately cancels out any variations in the isotopic abundance except those due to nuclear processes. Measurements on enriched standards showed that any variations greater than 1% would certainly have been detected, and variations greater than ½% would probably have been detected with replicate analyses. Within these limits, no variations in the K^(40) abundance between the terrestrial and meteoritic samples could be found which could be ascribed to particle irradiation in the early history of the solar system. Small K^(40) enrichments were observed in Norton County, Weekeroo Station, and Vaca Muerta; however, these appear to have been produced during cosmic-ray irradiation by the Ca^(40)(n, p) reaction. The present results set relatively strong limitations on possible mechanisms for the formation of the earth and the meteorites if the idea of a large-scale irradiation in the early history of the solar system is to be retained. Independent of the model of Fowler et al., limits have been placed on any differential uniform irradiation. The implications of the present work on the K-Ar ages of stone and iron meteorites are discussed. The possibility that iron meteorites are considerably older than the solar system as a whole appears unlikely

    Gauge Invariant Effective Stress-Energy Tensors for Gravitational Waves

    Get PDF
    It is shown that if a generalized definition of gauge invariance is used, gauge invariant effective stress-energy tensors for gravitational waves and other gravitational perturbations can be defined in a much larger variety of circumstances than has previously been possible. In particular it is no longer necessary to average the stress-energy tensor over a region of spacetime which is larger in scale than the wavelengths of the waves and it is no longer necessary to restrict attention to high frequency gravitational waves.Comment: 11 pages, RevTe

    Modeling the non-recycled Fermi gamma-ray pulsar population

    Get PDF
    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L depends on the period P and the period derivative \dot{P}. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L on P and \dot{P}, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L \propto P^{-a} \dot{P}^{b} where a=1.36\pm0.03 and b=0.44\pm0.02, similar to but not identical to the commonly assumed L \propto \sqrt{\dot{E}} \propto P^{-1.5} \dot{P}^{0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7{\pi} for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2{\sigma} upper limit on the average braking index and a 2{\sigma} lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 X 10^{10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the two-year sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected five-year sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.Comment: 26 pages, 10 figures, Accepted by ApJ on 8 September 201

    Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    Get PDF
    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV
    • …
    corecore