1,799 research outputs found

    Computer modeling of photodegradation

    Get PDF
    A computer program to simulate the photodegradation of materials exposed to terrestrial weathering environments is being developed. Input parameters would include the solar spectrum, the daily levels and variations of temperature and relative humidity, and materials such as EVA. A brief description of the program, its operating principles, and how it works was initially described. After that, the presentation focuses on the recent work of simulating aging in a normal, terrestrial day-night cycle. This is significant, as almost all accelerated aging schemes maintain a constant light illumination without a dark cycle, and this may be a critical factor not included in acceleration aging schemes. For outdoor aging, the computer model is indicating that the night dark cycle has a dramatic influence on the chemistry of photothermal degradation, and hints that a dark cycle may be needed in an accelerated aging scheme

    Measuring Bremsstrahlung Photons in 200 GeV p+p Collisions

    Full text link
    Direct photon production is an important observable in heavy ion collisions as photons are penetrating and therefore largely insensetive to final state effects that lead to jet quenching. Measurements of the fragmentation component to prompt photon yields in p+p and Au+Au collisions will provide both an important test of pQCD predictions and of predictions for modifications of this component in heavy ion collisions. By selecting photons associated with jets on the near side using hadron-photon correlations, fragmentation photons can be measured directly.Comment: 5 pages, 4 figures, poster presented at the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (QM2006

    Isolated prompt photon photoproduction at NLO

    Get PDF
    We present a full next-to-leading order code to calculate the photoproduction of prompt photons. The code is a general purpose program of partonic event generator type with large flexibility. We study the possibility to constrain the photon structure functions and comment on isolation issues. A comparison to ZEUS data is also shown.Comment: 22 pages LaTeX, 15 figure

    Is a Large Intrinsic k_T Needed to Describe Photon + Jet Photoproduction at HERA?

    Full text link
    We study the photoproduction of an isolated photon and a jet based on a code of partonic event generator type which includes the full set of next-to-leading order corrections. We compare our results to a recent ZEUS analysis in which an effective k_T of the incoming partons has been determined. We find that no additional intrinsic k_T is needed to describe the data.Comment: 23 pages LaTeX, 12 figure

    A NLO calculation of the hadron-jet cross section in photoproduction reactions

    Get PDF
    We study the photoproduction of large-p_T charged hadrons in e p collisions, both for the inclusive case and for the case where a jet in the final state is also measured. Our results are obtained by a NLO generator of partonic events. We discuss the sensitivity of the cross section to the renormalisation and factorisation scales, and to various fragmentation function parametrisations. The possibility to constrain the parton densities in the proton and in the photon is assessed. Comparisons are made with H1 data for inclusive charged hadron production.Comment: 28 pages LaTeX, 14 figure

    Modelling of photodegradation in solar cell modules of substrate and superstrate design made with ethylene-vinyl acetate as pottant material

    Get PDF
    A computer model was developed which can generate realistic concentration versus time profiles of the chemical species formed during photooxidation of hydrocarbon polymers using as input data a set of elementary reactions with corresponding rate constants and initial conditions. The results of computer simulation have been shown to be consistent with the general experimental observations of the photooxidation of polyethylene exposed to sunlight at ambient temperatures. The useful lifetime (5% oxidation) of the unstabilized polyethylene is predicted to vary from a few months in hot weather (100 F) to almost two years in cool weather (45 F) with an apparent net activation energy of 10 kcal/mol. Modelling studies of alternate mechanisms for stabilization of clear, amorphous, linear polyethylene suggest that the optimum stabilizer would be a molecularly dispensed additive in very low concentration which can trap peroxy radicals and also decompose hydroperoxides

    Modeling of photodegradation in solar cell modules of substrate and superstrate design made with ethylene-vinyl acetate as pottant material

    Get PDF
    The rates of hydrogen abstraction by peroxy radicals were proven to be too slow for significant oxidation of the alkane substrate to be important. The numerical procedure, independent of our particular data base was verified by reproducing concentration time profiles for a model reaction set describing the cesium flare system in the upper atmosphere. Simulation was identical to that given in the literature. Experimental verification of the data base is to be attempted by weatherometry studies in the coming year. Work on the new diagnostic techniques was completed. The adapted automated viscometer was demonstrated to be an efficient and reliable tool for routine measurements of viscosity (molecular weight) changes in solid samples after batch solutions have been made up. The laser photolysis GC method for monitoring extremely low levels of oxidation in polymers proved to be impractical because the yields of carbon monoxide were too low for quantification. Much progress was made with the computer model. The reaction matrix was completely revised, resulting in a new scheme of 31 reactions and time, lifetimes in excess of ten years. The results to date lead us to some tentative observations

    Modelling of photodegradation in solar cell modules of substrate and superstrate design made with ethylene-vinyl acetate as pottant material

    Get PDF
    A computer model which simulates, in principle, the chemical changes in the photooxidation of hydrocarbons using as input data a set of elementary reactions, corresponding kinetic rate data and appropriate initial conditions was developed. The Model was refined and exploited to examine more closely the photooxidation and photostabilization of a hydrocarbon polymer. The results lead to the following observations. (1) The time to failure, tau sub f (chosen as the level of 5% C-H bond oxidation which is within the range anticipated for marked change in mechanical properties) varies as the inverse square root of the light intensity. However, tau sub f is almost unaffected by both the photoinitiator type and concentration. (2) The time to failure decreases with the rate of abstraction of C-H by peroxy radicals but increases with the rate of bimolecular radical termination controlled by diffusion. (3) Of the various stabilization mechanisms considered, the trapping of peroxy radicals is distinctly the most effective, although the concommitant decomposition of hydroperoxide is also desirable

    Modelling of polymer photodegradation for solar cell modules

    Get PDF
    The photooxidation process was modelled with input data consisting of Arrhenius parameters A (the preexponential factor) and E (the activation energy)

    Modelling of polymer photodegradation for solar cell modules

    Get PDF
    A computer model including an integration routine was developed and demonstrated to simulate, in principle, the chemical changes which may occur in the photooxidation of hydrocarbons, using as input data a set of elementary reactions, corresponding rate constants and appropriate starting conditions. Application of this model to the photooxidation of pottant and plastic materials used in the LSA module designs provides a reliable predictive capability regarding the useful lifetime of these materials. An earlier mechanism consisting of 46 reactions was simplified considerably by reducing the number of formal termination steps since it became apparent that the major termination process goes via the peroxy radicals. In addition, new reactions of oxygen with acryl radicals (from Norrish type I) to form peracids, which then decompose to form carbon dioxide are included
    corecore