2,022 research outputs found
Quantum dynamics of a dc-SQUID coupled to an asymmetric Cooper pair transistor
We present a theoretical analysis of the quantum dynamics of a
superconducting circuit based on a highly asymmetric Cooper pair transistor
(ACPT) in parallel to a dc-SQUID. Starting from the full Hamiltonian we show
that the circuit can be modeled as a charge qubit (ACPT) coupled to an
anharmonic oscillator (dc-SQUID). Depending on the anharmonicity of the SQUID,
the Hamiltonian can be reduced either to one that describes two coupled qubits
or to the Jaynes-Cummings Hamiltonian. Here the dc-SQUID can be viewed as a
tunable micron-size resonator. The coupling term, which is a combination of a
capacitive and a Josephson coupling between the two qubits, can be tuned from
the very strong- to the zero-coupling regimes. It describes very precisely the
tunable coupling strength measured in this circuit and explains the
'quantronium' as well as the adiabatic quantum transfer read-out.Comment: 20 page
Multiple ionization of neon by soft X-rays at ultrahigh intensity
At the free-electron laser FLASH, multiple ionization of neon atoms was
quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion
charge states up to 6+, we compare the respective absolute photoionization
yields with results from a minimal model and an elaborate description. Both
approaches are based on rate equations and take into acccout a Gaussian spatial
intensity distribution of the laser beam. From the comparison we conclude, that
photoionization up to a charge of 5+ can be described by the minimal model. For
higher charges, the experimental ionization yields systematically exceed the
elaborate rate based prediction.Comment: 10 pages, 3 figure
Understanding the daily cycle of evapotranspiration: a method to quantify the influence of forcings and feedbacks
A method to analyze the daily cycle of evapotranspiration over land is presented. It quantifies the influence of external forcings, such as radiation and advection, and of internal feedbacks induced by boundary layer, surface layer, and land surface processes on evapotranspiration. It consists of a budget equation for evapotranspiration that is derived by combining a time derivative of the Penman–Monteith equation with a mixed-layer model for the convective boundary layer. Measurements and model results for days at two contrasting locations are analyzed using the method: midlatitudes (Cabauw, Netherlands) and semiarid (Niamey, Niger). The analysis shows that the time evolution of evapotranspiration is a complex interplay of forcings and feedbacks. Although evapotranspiration is initiated by radiation, it is significantly regulated by the atmospheric boundary layer and the land surface throughout the day. In both cases boundary layer feedbacks enhance the evapotranspiration up to 20 W m-2 h-1. However, in the case of Niamey this is offset by the land surface feedbacks since the soil drying reaches -30 W m-2 h-1. Remarkably, surface layer feedbacks are of negligible importance in a fully coupled system. Analysis of the boundary layer feedbacks hints at the existence of two regimes in this feedback depending on atmospheric temperature, with a gradual transition region in between the two. In the low-temperature regime specific humidity variations induced by evapotranspiration and dry-air entrainment have a strong impact on the evapotranspiration. In the high-temperature regime the impact of humidity variations is less pronounced and the effects of boundary layer feedbacks are mostly determined by temperature variation
Experimental demonstration of Aharonov-Casher interference in a Josephson junction circuit
A neutral quantum particle with magnetic moment encircling a static electric
charge acquires a quantum mechanical phase (Aharonov-Casher effect). In
superconducting electronics the neutral particle becomes a fluxon that moves
around superconducting islands connected by Josephson junctions. The full
understanding of this effect in systems of many junctions is crucial for the
design of novel quantum circuits. Here we present measurements and quantitative
analysis of fluxon interference patterns in a six Josephson junction chain. In
this multi-junction circuit the fluxon can encircle any combination of charges
on five superconducting islands, resulting in a complex pattern. We compare the
experimental results with predictions of a simplified model that treats fluxons
as independent excitations and with the results of the full diagonalization of
the quantum problem. Our results demonstrate the accuracy of the fluxon
interference description and the quantum coherence of these arrays
- …