29 research outputs found

    Affine hom-complexes

    Full text link
    For two general polytopal complexes the set of face-wise affine maps between them is shown to be a polytopal complex in an algorithmic way. The resulting algorithm for the affine hom-complex is analyzed in detail. There is also a natural tensor product of polytopal complexes, which is the left adjoint functor for Hom. This extends the corresponding facts from single polytopes, systematic study of which was initiated in [6,12]. Explicit examples of computations of the resulting structures are included. In the special case of simplicial complexes, the affine hom-complex is a functorial subcomplex of Kozlov's combinatorial hom-complex [14], which generalizes Lovasz' well-known construction [15] for graphs.Comment: final version, to appear in Portugaliae Mathematic

    Few smooth d-polytopes with n lattice points

    Get PDF
    We prove that, for fixed n there exist only finitely many embeddings of Q-factorial toric varieties X into P^n that are induced by a complete linear system. The proof is based on a combinatorial result that for fixed nonnegative integers d and n, there are only finitely many smooth d-polytopes with n lattice points. We also enumerate all smooth 3-polytopes with at most 12 lattice points. In fact, it is sufficient to bound the singularities and the number of lattice points on edges to prove finiteness.Comment: 20+2 pages; major revision: new author, new structure, new result

    Decomposition of semigroup algebras

    Full text link
    Let A \subseteq B be cancellative abelian semigroups, and let R be an integral domain. We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension of positive affine semigroup rings we obtain an algorithm computing the decomposition. When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms are implemented in the Macaulay2 package MonomialAlgebras.Comment: 12 pages, 2 figures, minor revisions. Package may be downloaded at http://www.math.uni-sb.de/ag/schreyer/jb/Macaulay2/MonomialAlgebras/html

    Polytopal linear algebra

    No full text

    Divisorial linear algebra of normal semigroup rings

    No full text

    Polytopial linear retractions

    No full text
    corecore