1,471 research outputs found

    Phonon-assisted decoherence and tunneling in quantum dot molecules

    Full text link
    We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between the quantum dots is studied in detail.Comment: 4 pages, 2 figures, conference proceeding NOEKS10, to be published in Phys. Stat. So

    Theory of phonon-mediated relaxation in doped quantum dot molecules

    Full text link
    A quantum dot molecule doped with a single electron in the presence of diagonal and off-diagonal carrier-phonon couplings is studied by means of a non-perturbative quantum kinetic theory. The interaction with acoustic phonons by deformation potential and piezoelectric coupling is taken into account. We show that the phonon-mediated relaxation is fast on a picosecond timescale and is dominated by the usually neglected off-diagonal coupling to the lattice degrees of freedom leading to phonon-assisted electron tunneling. We show that in the parameter regime of current electrical and optical experiments, the microscopic non-Markovian theory has to be employed.Comment: Final extended version, 5 pages, 4 figure

    Developing the Business Process Management Performance of an Information System Using the Delphi Study Technique

    Get PDF
    Information systems are used to manage an organisation’s business process management (BPM), its operations and performance. Thus, organisations will benefit from systematic processes for evaluating their business information systems with the aim of developing BPM and business information systems performance. The Delphi Study Technique (DST) is a structured business study technique that can be used as a systematic and interactive assessment process based on controlled feedback from business experts, professionals, or others with relevant experience. The Delphi study technique (also known as the Delphi method) has produced significant achievements in evaluating and improving BPM through identifying BPM values to be used as key indicators. This paper describes the essential stages for measuring the performance of an information system by combining the Delphi method and BPM values to improve an organisation’s business performance. The paper provides examples of the use of DST and discusses empirical results from the published literature

    The Enforceability of Sports Contracts: A Practitioner\u27s Playbook

    Get PDF

    Discretization of the velocity space in solution of the Boltzmann equation

    Full text link
    We point out an equivalence between the discrete velocity method of solving the Boltzmann equation, of which the lattice Boltzmann equation method is a special example, and the approximations to the Boltzmann equation by a Hermite polynomial expansion. Discretizing the Boltzmann equation with a BGK collision term at the velocities that correspond to the nodes of a Hermite quadrature is shown to be equivalent to truncating the Hermite expansion of the distribution function to the corresponding order. The truncated part of the distribution has no contribution to the moments of low orders and is negligible at small Mach numbers. Higher order approximations to the Boltzmann equation can be achieved by using more velocities in the quadrature

    Blow-up of the hyperbolic Burgers equation

    Full text link
    The memory effects on microscopic kinetic systems have been sometimes modelled by means of the introduction of second order time derivatives in the macroscopic hydrodynamic equations. One prototypical example is the hyperbolic modification of the Burgers equation, that has been introduced to clarify the interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous studies suggested the finite time blow-up of this equation, and here we present a rigorous proof of this fact

    A causal statistical family of dissipative divergence type fluids

    Full text link
    In this paper we investigate some properties, including causality, of a particular class of relativistic dissipative fluid theories of divergence type. This set is defined as those theories coming from a statistical description of matter, in the sense that the three tensor fields appearing in the theory can be expressed as the three first momenta of a suitable distribution function. In this set of theories the causality condition for the resulting system of hyperbolic partial differential equations is very simple and allow to identify a subclass of manifestly causal theories, which are so for all states outside equilibrium for which the theory preserves this statistical interpretation condition. This subclass includes the usual equilibrium distributions, namely Boltzmann, Bose or Fermi distributions, according to the statistics used, suitably generalized outside equilibrium. Therefore this gives a simple proof that they are causal in a neighborhood of equilibrium. We also find a bigger set of dissipative divergence type theories which are only pseudo-statistical, in the sense that the third rank tensor of the fluid theory has the symmetry and trace properties of a third momentum of an statistical distribution, but the energy-momentum tensor, while having the form of a second momentum distribution, it is so for a different distribution function. This set also contains a subclass (including the one already mentioned) of manifestly causal theories.Comment: LaTex, documentstyle{article

    Real time plasma equilibrium reconstruction in a Tokamak

    Get PDF
    The problem of equilibrium of a plasma in a Tokamak is a free boundary problemdescribed by the Grad-Shafranov equation in axisymmetric configurations. The right hand side of this equation is a non linear source, which represents the toroidal component of the plasma current density. This paper deals with the real time identification of this non linear source from experimental measurements. The proposed method is based on a fixed point algorithm, a finite element resolution, a reduced basis method and a least-square optimization formulation

    On the kinetic systems for simple reacting spheres : modeling and linearized equations

    Get PDF
    Series: Springer Proceedings in Mathematics & Statistics, Vol. 75In this work we present some results on the kinetic theory of chemically reacting gases, concerning the model of simple reacting spheres (SRS) for a gaseous mixture undergoing a chemical reaction of type A1 +A2 A3 +A4. Starting from the approach developed in paper [11], we provide properties of the SRS system needed in the mathematical and physical analysis of the model. Our main result in this proceedings provides basic properties of the SRS system linearized around the equilibrium, including the explicit representations of the kernels of the linearized SRS operators.Fundação para a Ciência e a Tecnologia (FCT), PEst-C/MAT/UI0013/2011, SFRH/BD/28795/200
    • …
    corecore