We point out an equivalence between the discrete velocity method of solving
the Boltzmann equation, of which the lattice Boltzmann equation method is a
special example, and the approximations to the Boltzmann equation by a Hermite
polynomial expansion. Discretizing the Boltzmann equation with a BGK collision
term at the velocities that correspond to the nodes of a Hermite quadrature is
shown to be equivalent to truncating the Hermite expansion of the distribution
function to the corresponding order. The truncated part of the distribution has
no contribution to the moments of low orders and is negligible at small Mach
numbers. Higher order approximations to the Boltzmann equation can be achieved
by using more velocities in the quadrature