310 research outputs found

    Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    Get PDF
    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 μL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations

    A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols.

    Get PDF
    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.We are grateful to the Marie Curie Foundation (D.P. & J.C.), EPSRC (T.W.G.), the ERC (V.D.), and the ERC and EPSRC for Fellowships (M.J.G.). We are grateful to Adam Smalley for DFT calculations and Yohei Shimidzu for assistance with optimization of the C–H acetoxylation reaction. Mass spectrometry data was acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University. The authors declare no competing financial interests.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.236

    Engineering supported membranes for cell biology

    Get PDF
    Cell membranes exhibit multiple layers of complexity, ranging from their specific molecular content to their emergent mechanical properties and dynamic spatial organization. Both compositional and geometrical organizations of membrane components are known to play important roles in life processes, including signal transduction. Supported membranes, comprised of a bilayer assembly of phospholipids on the solid substrate, have been productively served as model systems to study wide range problems in cell biology. Because lateral mobility of membrane components is readily preserved, supported lipid membranes with signaling molecules can be utilized to effectively trigger various intercellular reactions. The spatial organization and mechanical deformation of supported membranes can also be manipulated by patterning underlying substrates with modern micro- and nano-fabrication techniques. This article focuses on various applications and methods to spatially patterned biomembranes by means of curvature modulations and spatial reorganizations, and utilizing them to interface with live cells. The integration of biological components into synthetic devices provides a unique approach to investigate molecular mechanisms in cell biology

    Enantioselective, intermolecular benzylic C–H amination catalysed by an engineered iron-haem enzyme

    Get PDF
    C–H bonds are ubiquitous structural units of organic molecules. Although these bonds are generally considered to be chemically inert, the recent emergence of methods for C–H functionalization promises to transform the way synthetic chemistry is performed. The intermolecular amination of C–H bonds represents a particularly desirable and challenging transformation for which no efficient, highly selective, and renewable catalysts exist. Here we report the directed evolution of an iron-containing enzymatic catalyst—based on a cytochrome P450 monooxygenase—for the highly enantioselective intermolecular amination of benzylic C–H bonds. The biocatalyst is capable of up to 1,300 turnovers, exhibits excellent enantioselectivities, and provides access to valuable benzylic amines. Iron complexes are generally poor catalysts for C–H amination: in this catalyst, the enzyme's protein framework confers activity on an otherwise unreactive iron-haem cofactor

    Recent advances in glycopolypeptide synthesis

    Full text link
    Glycosylated peptides and proteins are ubiquitous in nature and display a wide range of biological functions including mediation of recognition events, protection from proteases, and lubrication in eyes and joints. Similarly, synthetic glycopolypeptides are also expected to show great potential as biomedical materials (e.g. scaffolds for tissue repair and drug carriers), as well as serve as valuable tools for probing carbohydrate-protein interactions. Although block copolypeptides and other complex polypeptide architectures have been known for some time, the synthesis of complex and well-defined glycopolypeptide materials, until recently, has been challenging. This article reviews the many advances and accomplishments made in the past few years toward development of strategies and methods for the preparation of synthetic glycopolypeptides via ring opening polymerization. © 2014 The Royal Society of Chemistry
    corecore