325 research outputs found

    Exploiting Aerobic Fitness to Reduce Risk of Hypobaric Decompression Sickness

    Get PDF
    Decompression sickness (DCS) is multivariable. But we hypothesize an aerobically fit person is less likely to experience hypobaric DCS than an unfit person given that fitness is exploited as part of the denitrogenation (prebreathe, PB) process prior to an altitude exposure. Aerobic fitness is peak oxygen uptake (VO2pk, ml/kg/min). Treadmill or cycle protocols were used over 15 years to determine VO2pks. We evaluated dichotomous DCS outcome and venous gas emboli (VGE) outcome detected in the pulmonary artery with Doppler ultrasound associated with VO2pk for two classes of experiments: 1) those with no PB or PB under resting conditions prior to ascent in an altitude chamber, and 2) PB that included exercise for some part of the PB. There were 165 exposures (mean VO2pk 40.5 plus or minus 7.6 SD) with 25 cases of DCS in the first protocol class and 172 exposures (mean VO2pk 41.4 plus or minus 7.2 SD) with 25 cases of DCS in the second. Similar incidence of the DCS (15.2% vs. 14.5%) and VGE (45.5% vs. 44.8%) between the two classes indicates that decompression stress was similar. The strength of association between outcome and VO2pk was evaluated using univariate logistic regression. An inverse relationship between the DCS outcome and VO2pk was evident, but the relationship was strongest when exercise was done as part of the PB (exercise PB, coef. = -0.058, p = 0.07; rest or no PB, coef. = -0.005, p = 0.86). There was no relationship between VGE outcome and VO2pk (exercise PB, coef. = -0.003, p = 0.89; rest or no PB, coef. = 0.014, p = 0.50). A significant change in probability of DCS was associated with fitness only when exercise was included in the denitrogenation process. We believe a fit person that exercises during PB efficiently eliminates dissolved nitrogen from tissues

    Evaluation of Dual Pressurized Rover Operations During Simulated Planetary Surface Exploration

    Get PDF
    Introduction: A pair of small pressurized rovers (Space Exploration Vehicles, or SEVs) is at the center of the Global Point-of-Departure architecture for future human planetary exploration. Simultaneous operation of multiple crewed surface assets should maximize productive crew time, minimize overhead, and preserve contingency return paths. Methods: A 14-day mission simulation was conducted in the Arizona desert as part of NASA?s 2010 Desert Research and Technology Studies (DRATS). The simulation involved two SEV concept vehicles performing geological exploration under varied operational modes affecting both the extent to which the SEVs must maintain real-time communications with mission control ("Continuous" vs. "Twice-a-Day") and their proximity to each other ("Lead-and-Follow" vs. "Divide-and-Conquer"). As part of a minimalist lunar architecture, no communications relay satellites were assumed. Two-person crews consisting of an astronaut and a field geologist operated each SEV, day and night, throughout the entire 14-day mission, only leaving via the suit ports to perform simulated extravehicular activities. Standard metrics enabled quantification of the habitability and usability of all aspects of the SEV concept vehicles throughout the mission, as well as comparison of the extent to which the operating modes affected crew productivity and performance. Practically significant differences in the relevant metrics were prospectively defined for the testing of all hypotheses. Results and Discussion: Data showed a significant 14% increase in available science time (AST) during Lead-and-Follow mode compared with Divide-and-Conquer, primarily because of the minimal overhead required to maintain communications during Lead-and-Follow. In Lead-and-Follow mode, there was a non-significant 2% increase in AST during Twice-a-Day vs. Continuous communications. Situational awareness of the other vehicle?s location, activities, and contingency return constraints were enhanced during Lead-and-Follow and Twice-a-Day communications modes due to line-of-sight and direct SEV-to-SEV communication. Preliminary analysis of Scientific Data Quality and Observation Quality metrics showed no significant differences between modes

    Late Rather Than Early Onset Bubbles in the Pulmonary Artery During Altitude Exposures Correlate Better with the Onset of "Pain-Only" Decompression Illness

    Get PDF
    Mechanistic insight about "pain-only" decompression illness (DCI) is limited given indirect information about venous gas emboli (VGE) detected in the pulmonary artery with Doppler ultrasound. However, we show that VGE first detected late in an altitude exposure are closely associated with subsequent symptom onset. Knowing that VGE occur late is an indication that a symptom will occur soon, but this is not a sufficient condition to guarantee that a symptom will occur

    Metabolic and Subjective Results Review of the Integrated Suit Test Series

    Get PDF
    Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a larger anthropometric portion of the astronaut population, and elements tested only in the unsuited condition need to be evaluated with an EVA suit and appropriate analog environment

    Occupant Protection during Orion Crew Exploration Vehicle Landings

    Get PDF
    The constellation program is evaluating current vehicle design capabilities for nominal water landings and contingency land landings of the Orion Crew Exploration vehicle. The Orion Landing Strategy tiger team was formed to lead the technical effort for which associated activities include the current vehicle design, susceptibility to roll control and tip over, reviewing methods for assessing occupant injury during ascent / aborts /landings, developing an alternate seat/attenuation design solution which improves occupant protection and operability, and testing the seat/attenuation system designs to ensure valid results. The EVA physiology, systems and Performance (EPSP) project is leading the effort under the authority of the Tiger Team Steering committee to develop, verify, validate and accredit biodynamics models using a variety of crash and injury databases including NASCAR, Indy Car and military aircraft. The validated biodynamics models will be used by the Constellation program to evaluate a variety of vehicle, seat and restraint designs in the context of multiple nominal and off-nominal landing scenarios. The models will be used in conjunction with Acceptable Injury Risk definitions to provide new occupant protection requirements for the Constellation Program

    Modeling Oxygen Prebreathe Protocols for Exploration Extravehicular Activities Using Variable Pressure Suits

    Get PDF
    Exploration missions are expected to use variable pressure extravehicular activity (EVA) spacesuits as well as a spacecraft "exploration atmosphere" of 56.5 kPa (8.2 psia), 34% O2, both of which provide the possibility of reducing the oxygen prebreathe times necessary to reduce decompression sickness (DCS) risk. Previous modeling work predicted 8.4% DCS risk for an EVA beginning at the exploration atmosphere, followed by 15 minutes of in-suit O2 prebreathe, and 6 hours of EVA at 29.6 kPa (4.3 psia). In this study we model notional prebreathe protocols for a variable pressure suit where the exploration atmosphere is unavailable

    How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    Get PDF
    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, postmortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multipurpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A twoparameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head xacceleration peak response correlated with the human response at 8 and 10G 100 ms but not 10G 70 ms. The phase lagged the human response. Head zacceleration was not correlated. Chest xacceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head xdisplacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder xdisplacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head xacceleration was not well correlated. Head and chest zacceleration was in phase but had a higher peak response. Chest zacceleration was highly correlated with heavier subjects at lower G pulses (Cora = 0.86 for 125 kg at 8 G). The human response was variable in shoulder zdisplacement but the THOR was in phase and was comparable to the mean peak response. Head xand zdisplacement was in phase but had higher peaks. Seat pan forces were well correlated, were in phase, but had a larger peak response than most subjects. The THOR does not respond to frontal and spinal impacts exactly the same way that a human does. Some responses are well matched and others are not. Understanding the strengths and weaknesses of this ATD is an important first step in determining its usefulness in occupant protection at NAS

    Ambulation Increases Decompression Sickness in Spacewalk Simulations

    Get PDF
    Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. Understanding the relationships is important to evaluate exercise prebreathe protocols and quantify decompression risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS. METHODS Four experiments will replicate the CEVIS exercise-enhanced oxygen prebreathe protocol, each with a different exception. The first of these is currently underway. Experiment 1 - Subjects complete controlled ambulation (walking in place with fixed cadence and step height) during both preflight and at 4.3 psi instead of remaining nonambulatory throughout. Experiment 2 - Subjects remain non-ambulatory during the preflight period and ambulatory at 4.3 psi. Experiment 3 - Subjects ambulate during the preflight period and remain non-ambulatory at 4.3 psi. Experiment 4 - The order of heavy and light exercise employed in the CEVIS protocol is reversed, with the light exercise occurring first (subjects remain non-ambulatory throughout). Decompression stress is assessed with non-invasive ultrasound during each of 14 epochs of a 4 hour simulated spacewalk at 4.3 psi; aural Doppler is used to monitor bubbles (Spencer grade 0-IV scale) passing through the pulmonary artery, and two-dimensional echocardiographic imaging is used to look for left ventricular gas emboli (LVGE; the presence of which is a test termination criterion). Venous blood is collected at baseline and twice following repressurization to determine if the decompression stress is correlated with microparticles (cell fragments) accumulation. The plan is to test 25-50 subjects in each experiment. Fisher Exact Tests (one-tailed) are used to compare test and control groups. Trials are suspended when the DCS or grade IV VGE observations reach 70% confidence of DCS risk >15% and grade IV VGE risk >20%. RESULTS Experiment 1 was concluded with 20 complete trials (15 male, 5 female) since the statistical outcome would not change with five additional trials. The observed DCS was significantly greater in Experiment 1 than in CEVIS trials (4/20 [20%] vs. 0/45 [0%], respectively, p=0.007), as was the frequency of peak grade IV VGE (6/21 [29%; including one additional subject that presented grade IV VGE but whose trial was ended before completion when LVGE were observed] vs. 3/45 [7%], respectively, p=0.024). Experiment 3 trials are now underway, with 11 trials completed (10 male, 1 female). Preliminary results indicate no difference in observed DCS between Experiment 3 and CEVIS trials (1/11 [9%] vs. 0/45 [0%], respectively, p=0.196), or between Experiment 3 and Experiment 1 trials (p=0.405). The frequency of peak grade IV VGE in Experiment 3 (2/11 [18%]) did not differ from CEVIS or Experiment 1 trials (p=0.251 and p=0.425, respectively). Microparticle patterns are widely variable and still under analysis. DISCUSSION The results of the Experiment 1 trials support the thesis that decompression stress is increased by ambulation exercise, given the higher incidence of DCS and grade IV VGE when compared to the non-ambulatory PRP CEVIS trials. Experiment 3 trials are incomplete, but suggest that the effect of ambulation during ground level preflight oxygen breathing alone, when subjects are undersaturated with inert gas, may not differ in risk from ambulation at both preflight and spacesuit pressures, the latter when subjects are supersaturated with inert gas. Further trials are needed to confirm the relative effects of ambulation in undersaturated vs. supersaturated states and to determine whether light exercise facilitates the removal of heavy exercise-induced nucleation (Experiment 4)
    corecore