12 research outputs found

    The quasi-liquid layer of ice revisited : the role of temperature gradients and tip chemistry in AFM studies

    Get PDF
    In this work, we present new results of atomic force microscopy (AFM) force curves over pure ice at different temperatures, performed with two different environmental chambers and different kinds of AFM tips. Our results provide insight to resolve the controversy on the interpretation of experimental AFM curves on the ice\u2013air interface for determining the thickness of the quasi-liquid layer (QLL). The use of a Mini Environmental Chamber (mEC) that provides an accurate control of the temperature and humidity of the gases in contact with the sample allowed us for the first time to get force curves over the ice\u2013air interface without jump-in (jump of the tip onto the ice surface, widely observed in previous studies). These results suggest a QLL thickness below 1 nm within the explored temperature range ( 127 to 122\u25e6C). This upper bound is significantly lower than most of the previous AFM results, which suggests that previous authors overestimate the equilibrium QLL thickness, due to temperature gradients, or indentation of ice during the jump-in. Additionally, we proved that the hydrophobicity of AFM tips affects significantly the results of the experiments. Over-all, this work shows that, if one chooses the experimental conditions properly, the QLL thicknesses obtained by AFM lie over the lower bound of the highly disperse results re-ported in the literature. This allows estimating upper boundaries for the QLL thicknesses, which is relevant to validate QLL theories and to improve multi phase atmospheric chemistry models

    Environmental chamber with controlled temperature and relative humidity for ice crystallization kinetic measurements by atomic force microscopy

    No full text
    The present work describes the development of an environmental chamber (EC), with temperature and humidity control, for measuring ice growth kinetics over a substrate with an atomic force microscope (AFM). The main component of the EC is an AFM fluid glass cell. The relative humidity (RH) inside the EC is set by the flow of a controlled ratio of dry and humid nitrogen gases. The sample temperature is fixed with an AFM commercial accessory, while the temperature of the nitrogen gas inside the EC is controlled by circulating cold nitrogen vapor through a copper cooler, specially designed for this purpose. With this setup, we could study the growth rate of ice crystallization over a mica substrate by measuring the force exerted between the tip and the sample when they approach each other as a function of time. This experimental development represents a significant improvement with respect to previous experimental determinations of ice growth rates, where RH and temperature of the air above the sample were determined far away from the ice crystallization regions, in opposition to the present work

    Structure of supercooled water in clusters and bulk and its relation to the two-state picture of water: Results from the TIP4P-ice model

    No full text
    The structure of water clusters (H2O)n (n = 40 -200) and bulk water were examined by molecular dynamics simulations using the TIP4P-ice water model. The analysis of the low-temperature structures in terms of the local structure index (LSI) showed a bimodal distribution. This finding supports the two-state picture derived from the analysis of the inherent dynamics of bulk SPC/E water. The water molecules at the outer interface of the coldest clusters are more structured than those in the inner core. The geometrical constraint of the interface forces the surface molecules to lose one neighbor and adopt a local angular distribution of hydrogen bonds resembling that found in the basal plane of ice Ih

    Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort.

    No full text
    ObjectiveReplicating HIV-1 in the brain is present in HIV encephalitis (HIVE) and microglial nodule encephalitis (MGNE) and is putatively linked with HIV-associated neurocognitive disorders (HAND). A cliniconeurovirological correlation was conducted to elucidate the relationship between brain viral load and clinical phenotype. SUBJECTS AND ASSAYS: HIV gag/pol RNA and DNA copies were quantified with reverse transcriptase-polymerase chain reaction or polymerase chain reaction in 148 HAART-era brain specimens. Comparison with HAND, HIVE, and MGNE and correlation with neuropsychological (NP) test scores were done using one-way ANOVA with Tukey-Kramer and Spearman tests, respectively.ResultsBrain HIV RNA was higher in subjects with HAND plus HIVE versus without HAND (delta = 2.48 log10 units, n = 27 versus 36, P < 0.001). In HAND without HIVE or MGNE, brain HIV RNA was not significantly different versus without HAND (P = 0.314). Worse NP scores correlated significantly with higher HIV RNA and interferon responses in brain specimens (P < 0.001) but not with HIV RNA levels in premortem blood plasma (n = 114) or cerebrospinal fluid (n = 104). In subjects with MGNE, brain HIV RNA was slightly higher versus without MGNE (P < 0.01) and much lower versus with HIVE (P < 0.001).ConclusionsBrain HIV RNA and to a lesser extent HIV DNA are correlated with worse NP performance in the 6 months before death. Linkage occurs primarily in patients with HIVE and MGNE, and these patients could obtain added NP improvement by further reducing brain HIV while on HAART. Patients not in those groups are less certain to obtain added NP benefit
    corecore