41 research outputs found

    SU(2) WZW Theory at Higher Genera

    Full text link
    We compute, by free field techniques, the scalar product of the SU(2) Chern-Simons states on genus > 1 surfaces. The result is a finite-dimensional integral over positions of ``screening charges'' and one complex modular parameter. It uses an effective description of the CS states closely related to the one worked out by Bertram. The scalar product formula allows to express the higher genus partition functions of the WZW conformal field theory by finite-dimensional integrals. It should provide the hermitian metric preserved by the Knizhnik-Zamolodchikov-Bernard connection describing the variations of the CS states under the change of the complex structure of the surface.Comment: 44 pages, IHES/P/94/10, Latex fil

    On Renormalization Group Flows and Polymer Algebras

    Get PDF
    In this talk methods for a rigorous control of the renormalization group (RG) flow of field theories are discussed. The RG equations involve the flow of an infinite number of local partition functions. By the method of exact beta-function the RG equations are reduced to flow equations of a finite number of coupling constants. Generating functions of Greens functions are expressed by polymer activities. Polymer activities are useful for solving the large volume and large field problem in field theory. The RG flow of the polymer activities is studied by the introduction of polymer algebras. The definition of products and recursive functions replaces cluster expansion techniques. Norms of these products and recursive functions are basic tools and simplify a RG analysis for field theories. The methods will be discussed at examples of the Φ4\Phi^4-model, the O(N)O(N) σ\sigma-model and hierarchical scalar field theory (infrared fixed points).Comment: 32 pages, LaTeX, MS-TPI-94-12, Talk presented at the conference ``Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics'', 25-27 July 1994, Palaiseau, Franc

    On Finite 4D Quantum Field Theory in Non-Commutative Geometry

    Get PDF
    The truncated 4-dimensional sphere S4S^4 and the action of the self-interacting scalar field on it are constructed. The path integral quantization is performed while simultaneously keeping the SO(5) symmetry and the finite number of degrees of freedom. The usual field theory UV-divergences are manifestly absent.Comment: 18 pages, LaTeX, few misprints are corrected; one section is remove

    Defect loops in gauged Wess-Zumino-Witten models

    Get PDF
    We consider loop observables in gauged Wess-Zumino-Witten models, and study the action of renormalization group flows on them. In the WZW model based on a compact Lie group G, we analyze at the classical level how the space of renormalizable defects is reduced upon the imposition of global and affine symmetries. We identify families of loop observables which are invariant with respect to an affine symmetry corresponding to a subgroup H of G, and show that they descend to gauge-invariant defects in the gauged model based on G/H. We study the flows acting on these families perturbatively, and quantize the fixed points of the flows exactly. From their action on boundary states, we present a derivation of the "generalized Affleck-Ludwig rule, which describes a large class of boundary renormalization group flows in rational conformal field theories.Comment: 43 pages, 2 figures. v2: a few typos corrected, version to be published in JHE

    On the dynamical generation of the Maxwell term and scale invariance

    Full text link
    Gauge theories with no Maxwell term are investigated in various setups. The dynamical generation of the Maxwell term is correlated to the scale invariance properties of the system. This is discussed mainly in the cases where the gauge coupling carries dimensions. The term is generated when the theory contains a scale explicitly, when it is asymptotically free and in particular also when the scale invariance is spontaneously broken. The terms are not generated when the scale invariance is maintained. Examples studied include the large NN limit of the CPN1CP^{N-1} model in (2+ϵ)(2+\epsilon) dimensions, a 3D gauged ϕ6\phi^6 vector model and its supersymmetric extension. In the latter case the generation of the Maxwell term at a fixed point is explored. The phase structure of the d=3d=3 case is investigated in the presence of a Chern-Simons term as well. In the supersymmetric ϕ6\phi^6 model the emergence of the Maxwell term is accompanied by the dynamical generation of the Chern-Simons term and its multiplet and dynamical breaking of the parity symmetry. In some of the phases long range forces emerge which may result in logarithmic confinement. These include a dilaton exchange which plays a role also in the case when the theory has no gauge symmetry. Gauged Lagrangian realizations of the 2D coset models do not lead to emergent Maxwell terms. We discuss a case where the gauge symmetry is anomalous.Comment: 38 pages, 4 figures; v2 slightly improved, typos fixed, references added, published versio

    QED coupled to QEG

    Full text link
    We discuss the non-perturbative renormalization group flow of Quantum Electrodynamics (QED) coupled to Quantum Einstein Gravity (QEG) and explore the possibilities for defining its continuum limit at a fixed point that would lead to a non-trivial, i.e. interacting field theory. We find two fixed points suitable for the Asymptotic Safety construction. In the first case, the fine-structure constant vanishes at the fixed point and its infrared ("renormalized") value is a free parameter not determined by the theory itself. In the second case, the fixed point value of the fine-structure constant is non-zero, and its infrared value is a computable prediction of the theory.Comment: 25 pages, 3 figure

    Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks

    Get PDF
    We make a high-precision Monte Carlo study of two- and three-dimensional self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot algorithm and the Karp-Luby algorithm. We study the critical exponents ν\nu and 2Δ4γ2\Delta_4 -\gamma as well as several universal amplitude ratios; in particular, we make an extremely sensitive test of the hyperscaling relation dν=2Δ4γd\nu = 2\Delta_4 -\gamma. In two dimensions, we confirm the predicted exponent ν=3/4\nu = 3/4 and the hyperscaling relation; we estimate the universal ratios  / =0.14026±0.00007\ / \ = 0.14026 \pm 0.00007,  / =0.43961±0.00034\ / \ = 0.43961 \pm 0.00034 and Ψ=0.66296±0.00043\Psi^* = 0.66296 \pm 0.00043 (68\% confidence limits). In three dimensions, we estimate ν=0.5877±0.0006\nu = 0.5877 \pm 0.0006 with a correction-to-scaling exponent Δ1=0.56±0.03\Delta_1 = 0.56 \pm 0.03 (subjective 68\% confidence limits). This value for ν\nu agrees excellently with the field-theoretic renormalization-group prediction, but there is some discrepancy for Δ1\Delta_1. Earlier Monte Carlo estimates of ν\nu, which were  ⁣0.592\approx\! 0.592, are now seen to be biased by corrections to scaling. We estimate the universal ratios  / =0.1599±0.0002\ / \ = 0.1599 \pm 0.0002 and Ψ=0.2471±0.0003\Psi^* = 0.2471 \pm 0.0003; since Ψ>0\Psi^* > 0, hyperscaling holds. The approach to Ψ\Psi^* is from above, contrary to the prediction of the two-parameter renormalization-group theory. We critically reexamine this theory, and explain where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript (NYU-TH-94/09/01

    Non-holomorphic Modular Forms and SL(2,R)/U(1) Superconformal Field Theory

    Get PDF
    We study the torus partition function of the SL(2,R)/U(1) SUSY gauged WZW model coupled to N=2 U(1) current. Starting from the path-integral formulation of the theory, we introduce an infra-red regularization which preserves good modular properties and discuss the decomposition of the partition function in terms of the N=2 characters of discrete (BPS) and continuous (non-BPS) representations. Contrary to our naive expectation, we find a non-holomorphic dependence (dependence on \bar{\tau}) in the expansion coefficients of continuous representations. This non-holomorphicity appears in such a way that the anomalous modular behaviors of the discrete (BPS) characters are compensated by the transformation law of the non-holomorphic coefficients of the continuous (non-BPS) characters. Discrete characters together with the non-holomorphic continuous characters combine into real analytic Jacobi forms and these combinations exactly agree with the "modular completion" of discrete characters known in the theory of Mock theta functions \cite{Zwegers}. We consider this to be a general phenomenon: we expect to encounter "holomorphic anomaly" (\bar{\tau}-dependence) in string partition function on non-compact target manifolds. The anomaly occurs due to the incompatibility of holomorphy and modular invariance of the theory. Appearance of non-holomorphicity in SL(2,R)/U(1) elliptic genus has recently been observed by Troost \cite{Troost}.Comment: 39+1 pages, no figure; v2 a reference added, some points are clarified, typos corrected, version to appear in JHE

    On Global Aspects Of Gauged Wess-Zumino-Witten Model

    Get PDF
    This is a thesis for Rigaku-Hakushi(\simeq Ph. D.). It clarifies the geometric meaning and field theoretical consequences of the spectral flows acting on the space of states of the `G/HG/H coset model'. As suggested by Moore and Seiberg, the spectral flow is realized as the response of states to certain change of background gauge field together with the gauge transformation on a circle. Applied to the boundary circle of a disc with field insertion, such a realization leads to a certain relation among correlators of the gauged WZW model for various principal HH-bundles. In the course of derivation, we find an expression of a (dressed) gauge invariant field as an integral over the flag manifold of HH and an expression of a correlator as an integral over a certain moduli space of holomorphic HCH_{\bf C}-bundles with quasi-flag structure at the insertion point. We also find that the gauge transformation on the circle corresponding to the spectral flow determines a bijection of the set of isomorphism classes of holomorphic HCH_{\bf C}-bundles with quasi-flag structure of one topological type to that of another. As an application, it is pointed out that problems arising from the field identification fixed points may be resolved by taking into account of all principal HH-bundles.Comment: (Thesis) 125 pages, UT-Komaba/94-3 (Latex errors are corrected
    corecore