481 research outputs found

    Patchy promiscuity:machine learning applied to predict the host specificity of <i>Salmonella enterica </i>and <i>Escherichia coli</i>

    Get PDF
    Supporting data for Patchy promiscuity: machine learning applied to predict the host specificity of Salmonella enterica and Escherichia coli, as published in <em>Microbial Genomics</em

    Biology of Consciousness

    Get PDF
    The Dynamic Core and Global Workspace hypotheses were independently put forward to provide mechanistic and biologically plausible accounts of how brains generate conscious mental content. The Dynamic Core proposes that reentrant neural activity in the thalamocortical system gives rise to conscious experience. Global Workspace reconciles the limited capacity of momentary conscious content with the vast repertoire of long-term memory. In this paper we show the close relationship between the two hypotheses. This relationship allows for a strictly biological account of phenomenal experience and subjectivity that is consistent with mounting experimental evidence. We examine the constraints on causal analyses of consciousness and suggest that there is now sufficient evidence to consider the design and construction of a conscious artifact

    Elucidation of the RamA Regulon in Klebsiella pneumoniae Reveals a Role in LPS Regulation

    Get PDF
    Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins

    The advantage of intergenic regions as genomic features for machine-learning-based host attribution of Salmonella Typhimurium from the USA

    Get PDF
    Salmonella enterica is a taxonomically diverse pathogen with over 2600 serovars associated with a wide variety of animal hosts including humans, other mammals, birds and reptiles. Some serovars are host-specific or host-restricted and cause disease in distinct host species, while others, such as serovar S. Typhimurium (STm), are generalists and have the potential to colonize a wide variety of species. However, even within generalist serovars such as STm it is becoming clear that pathovariants exist that differ in tropism and virulence. Identifying the genetic factors underlying host specificity is complex, but the availability of thousands of genome sequences and advances in machine learning have made it possible to build specific host prediction models to aid outbreak control and predict the human pathogenic potential of isolates from animals and other reservoirs. We have advanced this area by building host-association prediction models trained on a wide range of genomic features and compared them with predictions based on nearest-neighbour phylogeny. SNPs, protein variants (PVs), antimicrobial resistance (AMR) profiles and intergenic regions (IGRs) were extracted from 3883 high-quality STm assemblies collected from humans, swine, bovine and poultry in the USA, and used to construct Random Forest (RF) machine learning models. An additional 244 recent STm assemblies from farm animals were used as a test set for further validation. The models based on PVs and IGRs had the best performance in terms of predicting the host of origin of isolates and outperformed nearest-neighbour phylogenetic host prediction as well as models based on SNPs or AMR data. However, the models did not yield reliable predictions when tested with isolates that were phylogenetically distinct from the training set. The IGR and PV models were often able to differentiate human isolates in clusters where the majority of isolates were from a single animal source. Notably, IGRs were the feature with the best performance across multiple models which may be due to IGRs acting as both a representation of their flanking genes, equivalent to PVs, while also capturing genomic regulatory variation, such as altered promoter regions. The IGR and PV models predict that ~45 % of the human infections with STm in the USA originate from bovine, ~40 % from poultry and ~14.5 % from swine, although sequences of isolates from other sources were not used for training. In summary, the research demonstrates a significant gain in accuracy for models with IGRs and PVs as features compared to SNP-based and core genome phylogeny predictions when applied within the existing population structure. This article contains data hosted by Microreact

    Comparison of Shiga toxin-encoding bacteriophages in highly pathogenic strains of Shiga toxin-producing Escherichia coli O157:H7 in the UK

    Get PDF
    Over the last 35 years in the UK, the burden of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infection has, during different periods of time, been associated with five different sub-lineages (1983-1995, Ia, I/IIa and I/IIb; 1996-2014, Ic; and 2015-2018, IIb). The acquisition of a stx2a-encoding bacteriophage by these five sub-lineages appears to have coincided with their respective emergences. The Oxford Nanopore Technologies (ONT) system was used to sequence, characterize and compare the stx-encoding prophages harboured by each sub-lineage to investigate the integration of this key virulence factor. The stx2a-encoding prophages from each of the lineages causing clinical disease in the UK were all different, including the two UK sub-lineages (Ia and I/IIa) circulating concurrently and causing severe disease in the early 1980s. Comparisons between the stx2a-encoding prophage in sub-lineages I/IIb and IIb revealed similarity to the prophage commonly found to encode stx2c, and the same site of bacteriophage integration (sbcB) as stx2c-encoding prophage. These data suggest independent acquisition of previously unobserved stx2a-encoding phage is more likely to have contributed to the emergence of STEC O157:H7 sub-lineages in the UK than intra-UK lineage to lineage phage transmission. In contrast, the stx2c-encoding prophage showed a high level of similarity across lineages and time, consistent with the model of stx2c being present in the common ancestor to extant STEC O157:H7 and maintained by vertical inheritance in the majority of the population. Studying the nature of the stx-encoding bacteriophage contributes to our understanding of the emergence of highly pathogenic strains of STEC O157:H7

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx&lt;sub&gt;2&lt;/sub&gt; in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx&lt;sub&gt;2&lt;/sub&gt; phage acquisition
    • …
    corecore