17 research outputs found

    Magnetic field effect on the dielectric constant of glasses: Evidence of disorder within tunneling barriers

    Full text link
    The magnetic field dependence of the low frequency dielectric constant ere_r(H) of a structural glass a - SiO2 + xCyHz was studied from 400 mK to 50 mK and for H up to 3T. Measurement of both the real and the imaginary parts of ere_r is used to eliminate the difficult question of keeping constant the temperature of the sample while increasing H: a non-zero ere_r(H) dependence is reported in the same range as that one very recently reported on multicomponent glasses. In addition to the recently proposed explanation based on interactions, the reported ere_r(H) is interpreted quantitatively as a consequence of the disorder lying within the nanometric barriers of the elementary tunneling systems of the glass.Comment: latex Bcorrige1.tex, 5 files, 4 figures, 7 pages [SPEC-S02/009

    Effect of bubble’s arrangement on the viscous torque in bubbly Taylor- Couette flow

    Get PDF
    An experimental investigation of the interactions between bubbles, coherent motion and viscous drag in a Taylor-Couette flow with the outer cylinder at rest is presented. The cylinder radii ratio η is 0.91. Bubbles are injected inside the gap through a needle at the bottom of the apparatus. Different bubbles sizes are investigated (ratio between the bubble diameter and the gap width ranges from 0.05 to 0.125) for very small void fraction (α<=0.23%). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and velocity of the inner cylinder, ranging from 600 to 20000. Regarding these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. A detailed characterization of the vortices is performed for the single-phase flow. The experiment also develops bubbles tracking in a meridian plane and viscous torque of the inner cylinder measurements. The findings of this study show evidence of the link between bubbles localisation, Taylor vortices and viscous torque modifications. We also highlight two regimes of viscous torque modification and various types of bubbles arrangements, depending on their size and on the Reynolds number. Bubbles can have a sliding and wavering motion near the inner cylinder and be either captured by the Taylor vortices or by the outflow areas near the inner cylinder. For small buoyancy effect, bubbles are trapped, leading to an increase of the viscous torque. When buoyancy induced bubbles motion is increased by comparison to the coherent motion of the liquid, a decrease in the viscous torque is rather observed. The type of bubble arrangement is parameterized by the two dimensionless parameters C and H introduced by Climent et al. [E. Climent, M. Simonnet and J. Magnaudet, Phys. Fluids 19, 083301(2007)]. Phase diagrams summarizing the various types of bubbles arrangements, viscous torque modifications and axial wavelength evolution are built

    Exchange anisotropy in Co/NiO bilayers: time-dependent effects

    No full text
    The time dependence of the exchange anisotropy was studied in Co/NiO bilayers. In order to only observe the relaxation phenomena inside the antiferromagnetic (AF) layer and to eliminate the dynamic behaviour inside the ferromagnetic (F) layer, we have developed an experimental method where a small a.c. magnetic field is applied perpendicular to the main anisotropy axis. All data are obtained by magneto-optical (m.o.) experiments. We observe a logarithmic time dependence of Hud, the exchange unidirectional anisotropy. We prove that the key parameter for the rate of relaxation is the anisotropy of the AF layer which depends strongly of the preparation method. We use the random field model as proposed by Malozemoff and suppose a breakdown of the AF interface into regular domains of size close to the crystallite size (10 nm width). If we further develop a Fulcomer and Charap relaxation model, we can propose from the distribution of relaxation times an analysis in terms of a spread of AF anisotropy energies. High magnetic pulsed field experiments (55 T) complete the experimental study and the results are analysed assuming that the Zeeman energy balances the anisotropy energy of the AF domains and switches them into the opposite direction. Copyright EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

    Two-phase Couette–Taylor flow: Arrangement of the dispersed phase and effects on the flow structures

    Get PDF
    This study investigates the mutual interactions between a continuous and a dispersed phase (noncondensable or condensable) in the well-known Couette–Taylor flow between two concentric cylinders at low Reynolds numbers, where the outer cylinder is immobilized. In this experiment, the turbulent structures take place progressively. The noncondensable dispersed phase (air) is introduced either by ventilation, generated by agitation of a free surface situated at the top of the gap between the two cylinders. The condensable dispersed phase is generated by cavitation due to a drop in pressure. Comparisons are made between the single phase flow patterns and those observed in ventilated or cavitating flow. Two particular arrangements of the dispersed phase are experimentally evident, according to the Reynolds number of the flow. For low Reynolds numbers, bubbles are trapped in the core of the Taylor cells, whereas they migrate to the outflow regions near the inner cylinder for higher Reynolds numbers. Assessment of the forces applied to the bubbles and computation of their equilibrium position can act as a base in describing the bubble capture. When bubbles are located near the wall in the outflow region, it is found that the three first instabilities are strongly influenced by the dispersed phase. The cavitating flow is also characterized by an earlier appearance of the third instability
    corecore