1,125 research outputs found

    Early Career Academic Productivity Among Emergency Physicians With R01 Grant Funding

    Full text link
    Objectives:  The objective was to describe the early academic career activities of emergency physician (EP) scientists with recent Research Project Grant Program (R01) grant funding from the National Institutes of Health (NIH). Methods:  The curricula vitae of all EP scientists in the United States currently funded by the NIH were analyzed for evidence of advanced research training and frequency and type of publication and grant writing. Each investigator was surveyed for demographic features and estimation of protected time during their early career development. Results:  Eighteen investigators were identified. The median length of time from completion of residency to receipt of their first R01 grant was 11 years (interquartile range [IQR] = 11 to 15 years), and the median age of investigators at the time of this award was 43 years (IQR = 39 to 47 years). At the time of their award, researchers were publishing five peer‐reviewed manuscripts a year (IQR = 1 to 8 manuscripts) and had already received considerable external funding. Ninety‐four percent of those studied had pursued a research fellowship, an advanced degree, or an NIH K‐award following residency. Conclusions:  For EPs, receipt of an R01 from the NIH requires more than a decade of work following the completion of training. This period is characterized by pursuit of advanced research training, active and accelerating publication and collaboration, and acquisition of smaller extramural grants.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86816/1/j.1553-2712.2011.01118.x.pd

    Complement C5 and Early Oxygen Kinetics during Murine Sepsis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74696/1/j.aem.2004.10.025.pd

    Technology requirements for post-1985 communications satellites

    Get PDF
    The technical and functional requirements for commercial communication satellites are discussed. The need for providing quality service at an acceptable cost is emphasized. Specialized services are postulated in a needs model which forecasts future demands. This needs model is based upon 322 separately identified needs for long distance communication. It is shown that the 1985 demand for satellite communication service for a domestic region such as the United States, and surrounding sea and air lanes, may require on the order of 100,000 MHz of bandwith. This level of demand can be met by means of the presently allocated bandwidths and developing some key technologies. Suggested improvements include: (1) improving antennas so that high speed switching will be possible; (2) development of solid state transponders for 12 GHz and possibly higher frequencies; (3) development of switched or steered beam antennas with 10 db or higher gain for aircraft; and (4) continued development of improved video channel compression techniques and hardware

    Technology requirements for communication satellites in the 1980's

    Get PDF
    The key technology requirements are defined for meeting the forecasted demands for communication satellite services in the 1985 to 1995 time frame. Evaluation is made of needs for services and technical and functional requirements for providing services. The future growth capabilities of the terrestrial telephone network, cable television, and satellite networks are forecasted. The impact of spacecraft technology and booster performance and costs upon communication satellite costs are analyzed. Systems analysis techniques are used to determine functional requirements and the sensitivities of technology improvements for reducing the costs of meeting requirements. Recommended development plans and funding levels are presented, as well as the possible cost saving for communications satellites in the post 1985 era

    Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site

    Get PDF
    We consider 5 years of spectrometer measurements of OH(6–2) and O2(0–1) airglow emission intensities and temperatures made near Adelaide, Australia (35° S, 138° E), between September 2001 and August 2006 and compare them with measurements of the same parameters from at the same site using an airglow imager, with the intensities of the OH(8–3) and O(1S) emissions made with a filter photometer, and with 2 years of Aura MLS (Microwave Limb Sounder) v3.3 temperatures and 4.5 years of TIMED SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Sounding of the Atmosphere using Broadband Emission Radiometry) v2.0 temperatures for the same site. We also consider whether we can recover the actual emission heights from the intercomparison of the ground-based and satellite observations. We find a significant improvement in the correlation between the spectrometer OH and SABER temperatures by interpolating the latter to constant density surfaces determined using a meteor radar.Iain M. Reid, Andrew J. Spargo, Jonathan M. Woithe, Andrew R. Klekociuk, Joel P. Younger and Gulamabas G. Sivje

    Ion beam analysis of microcrystalline quartz artifacts from the Reed Mound Site, Delaware County, Oklahoma

    No full text
    Ion beam analysis (IBA) has been a powerful, non-destructive tool for archaeological research worldwide for over four decades, yet its full potential is seldom realized in North American archaeology. Herein the potential of particle induced X-ray emission spectrometry (PIXE) as a tool for future Ozarks chert provenance studies is evaluated based on its ability to facilitate (1) discrimination of Ozarks chert materials from different geological formations and (2) identification of discrete groups of artifacts from the same geological formation. In addition, PIXE was also used to evaluate the elemental heterogeneity of Ozarks chert materials. Thirty chert (microcrystalline quartz) artifacts were visually sorted and classified according to macroscopic features characteristic of certain chert resources from particular Ozarks geological formations. The elemental concentrations obtained from PIXE analysis underwent multivariate statistical analyses in order to gain insight from the data. The results indicate that PIXE could be a useful tool for assigning Ozarks chert materials to their respective geological formations, and possibly for determining regional or sub-regional provenance

    Cosmological Simulations of the Preheating Scenario for Galaxy Cluster Formation: Comparison to Analytic Models and Observations

    Full text link
    We perform a set of non--radiative cosmological simulations of a preheated intracluster medium in which the entropy of the gas was uniformly boosted at high redshift. The results of these simulations are used first to test the current analytic techniques of preheating via entropy input in the smooth accretion limit. When the unmodified profile is taken directly from simulations, we find that this model is in excellent agreement with the results of our simulations. This suggests that preheated efficiently smoothes the accreted gas, and therefore a shift in the unmodified profile is a good approximation even with a realistic accretion history. When we examine the simulation results in detail, we do not find strong evidence for entropy amplification, at least for the high-redshift preheating model adopted here. In the second section of the paper, we compare the results of the preheating simulations to recent observations. We show -- in agreement with previous work -- that for a reasonable amount of preheating, a satisfactory match can be found to the mass-temperature and luminosity-temperature relations. However -- as noted by previous authors -- we find that the entropy profiles of the simulated groups are much too flat compared to observations. In particular, while rich clusters converge on the adiabatic self--similar scaling at large radius, no single value of the entropy input during preheating can simultaneously reproduce both the core and outer entropy levels. As a result, we confirm that the simple preheating scenario for galaxy cluster formation, in which entropy is injected universally at high redshift, is inconsistent with observations.Comment: 11 pages, 13 figures, accepted for publication in Ap

    The Self-Regulated Growth of Supermassive Black Holes

    Full text link
    We present a series of simulations of the self--regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the MBHσM_{BH}-\sigma and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bulges. This finding is supported by recent observations of SMBHs in pseudobulges and bulges in barred systems, as compared to those hosted by classical bulges. Taken together, this provides support for the BHFP and binding energy correlations as being more "fundamental" than other proposed correlations in that they reflect the physical mechanism driving the co-evolution of SMBHs and spheroids.Comment: 15 pages, 16 figures, accepted for publication in Ap
    corecore