52 research outputs found

    Multi-stage metal forming: Variation and transformation

    Get PDF
    During precision forming of metal parts made of metastable austenitic stainless steels, the relationship between the scatter on the initial parameters like the strip thickness, yield stress, etc. on the product accuracy need to be known. This becomes complex if the material is instable, i.e. martensite forms very easily. The transformation rate depends on the stress state, which is related to friction. It also depends on the temperature, which is related to deformation heat. A greater understanding of these phenomena is obtained by doing a process window study, using design and analysis of computer experiments (DACE). This paper demonstrates how to perform a DACE study on a three-stage metal forming process, using distributed computing. The study focuses on:\ud \ud •Hardening due to strain-induced and stress-assisted transformation.\ud •The influence of metal forming parameters on the product accuracy

    Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia

    Get PDF
    Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion

    Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study

    Get PDF
    Thin-walled cardiac tissue samples superfused with oxygenated solutions are widely used in experimental studies. However, due to decreased oxygen supply and insufficient wash out of waste products in the inner layers of such preparations, electrophysiological functions could be compromised. Although the cascade of events triggered by cutting off perfusion is well known, it remains unclear as to which degree electrophysiological function in viable surface layers is affected by pathological processes occurring in adjacent tissue. Using a 3D numerical bidomain model, we aim to quantify the impact of superfusion-induced heterogeneities occurring in the depth of the tissue on impulse propagation in superficial layers. Simulations demonstrated that both the pattern of activation as well as the distribution of extracellular potentials close to the surface remain essentially unchanged. This was true also for the electrophysiological properties of cells in the surface layer, where most relevant depolarization parameters varied by less than 5.5 %. The main observed effect on the surface was related to action potential duration that shortened noticeably by 53 % as hypoxia deteriorated. Despite the known limitations of such experimental methods, we conclude that superfusion is adequate for studying impulse propagation and depolarization whereas repolarization studies should consider the influence of pathological processes taking place at the core of tissue sample

    Comparison of diurnal variations, gestational age and gender related differences in fetal heart rate (FHR) parameters between appropriate-for-gestational-age (AGA) and small-for-gestational-age (SGA) fetuses in the home environment

    Get PDF
    Objective To assess the influence of gender, time of the day and gestational age on fetal heart rate (FHR) parameters between appropriate-for-gestational-age (AGA) and small-for-gestational age (SGA) fetuses using a portable fetal ECG monitor employed in the home setting. Methods We analysed and compared the antenatal FHR data collected in the home setting on 61 healthy pregnant women with singleton pregnancies from 24 weeks gestation. Of the 61 women, 31 had SGA fetuses (estimated fetal weight below the tenth gestational centile) and 30 were pregnant with AGA fetuses. FHR recordings were collected for up to 20 h. Two 90 min intervals were deliberately chosen retrospectively with respect to signal recording quality, one during day-time and one at night-time for comparison. Results Overall, success rate of the fetal abdominal ECG in the AGA fetuses was 75.7% compared to 48.6% in the SGA group. Based on randomly selected episodes of heart rate traces where recording quality exceeded 80% we were able to show a marginal difference between day and night-time recordings in AGA vs. SGA fetuses beyond 32 weeks of gestation. A selection bias in terms of covering different representation periods of fetal behavioural states cannot be excluded. In contrast to previous studies, we neither controlled maternal diet and activity nor measured maternal blood hormone and heart rate as all mothers were monitored in the home environment. Conclusion Based on clinically unremarkable, but statistically significant differences in the FHR parameters between the AGA and SGA group we suggest that further studies with large sample size are required to assess the clinical value of antenatal fetal ECG monitoring

    Dependency of magnetocardiographically determined fetal cardiac time intervals on gestational age, gender and postnatal biometrics in healthy pregnancies

    Get PDF
    BACKGROUND: Magnetocardiography enables the precise determination of fetal cardiac time intervals (CTI) as early as the second trimester of pregnancy. It has been shown that fetal CTI change in course of gestation. The aim of this work was to investigate the dependency of fetal CTI on gestational age, gender and postnatal biometric data in a substantial sample of subjects during normal pregnancy. METHODS: A total of 230 fetal magnetocardiograms were obtained in 47 healthy fetuses between the 15(th )and 42(nd )week of gestation. In each recording, after subtraction of the maternal cardiac artifact and the identification of fetal beats, fetal PQRST courses were signal averaged. On the basis of therein detected wave onsets and ends, the following CTI were determined: P wave, PR interval, PQ interval, QRS complex, ST segment, T wave, QT and QTc interval. Using regression analysis, the dependency of the CTI were examined with respect to gestational age, gender and postnatal biometric data. RESULTS: Atrioventricular conduction and ventricular depolarization times could be determined dependably whereas the T wave was often difficult to detect. Linear and nonlinear regression analysis established strong dependency on age for the P wave and QRS complex (r(2 )= 0.67, p < 0.001 and r(2 )= 0.66, p < 0.001) as well as an identifiable trend for the PR and PQ intervals (r(2 )= 0.21, p < 0.001 and r(2 )= 0.13, p < 0.001). Gender differences were found only for the QRS complex from the 31(st )week onward (p < 0.05). The influence on the P wave or QRS complex of biometric data, collected in a subgroup in whom recordings were available within 1 week of birth, did not display statistical significance. CONCLUSION: We conclude that 1) from approximately the 18(th )week to term, fetal CTI which quantify depolarization times can be reliably determined using magnetocardiography, 2) the P wave and QRS complex duration show a high dependency on age which to a large part reflects fetal growth and 3) fetal gender plays a role in QRS complex duration in the third trimester. Fetal development is thus in part reflected in the CTI and may be useful in the identification of intrauterine growth retardation
    corecore