14,082 research outputs found
Time-resolved transillumination of turbid media
The suitability and limits of time-resolved transillumination to determine inner details of biological tissues are investigated by phantom experiments. The achievable improvement is demonstrated by using different phantoms (absorbing objects embedded in a turbid medium). By means of line-scans across a sharp edge the spatial resolution and its dependence on temporal resolution can be determined. To demonstrate the physical resolution according to the Rayleigh-criterion, measurements were performed on blackened bead pairs. Investigations with partially transparent beads demonstrate the high sensitivity of time-resolving techniques with respect to variations in scattering or absorption coefficients
Ten past and ten future GAS/MAUS-payloads
MAUS (materials science autonomous experiments) is one out of a series of flight opportunities which the Space Program of West Germany offers to scientists from the disciplines of materials research and processing for performing materials science investigations under microgravity conditions. Up to now, ten MAUS experiments were flown which were dealing with the following scientific topics: decomposition of binary alloys with miscibility gap in the liquid state, interaction of a solidification front with dispersed particles, critical Marangoni number, investigation of the magnetic compound MnBi, shrinkage of gas bubbles in glass melts and slip casting. The ten future experiments are partly reflights with modification of the scientific objectives as well as new experiments in the fields of chemical reactions, heat transfer, glass technology and Ostwald ripening. Looking to ten flown payloads, the peculiarities of instrument technology in GAS-cans and its evolution is discussed with emphasis on structure, electronics and thermal design. A typical modern payload using 100 percent of the resource is presented
Future MAUS payload and the TWIN-MAUS configuration
The German MAUS project (materials science autonomous experiments in weightlessness) was initiated in 1979 for optimum utilization of NASA's Get Away Special (GAS) program. The standard MAUS system was developed to meet GAS requirements and can accommodate a wide variety of GAS-type experiments. The system offers a range of services to experimenters within the framework of standardized interfaces. Four MAUS payloads being prepared for future space shuttle flight opportunities are described. The experiments include critical Marangoni convection, oscillatory Marangoni convection, pool boiling, and gas bubbles in glass melts. Scientific objectives as well as equipment hardware are presented together with recent improvements to the MAUS standard system, e.g., a new experiment control and data management unit and a semiconductor memory. A promising means of increasing resources in the field of GAS experiments is the interconnection of GAS containers. This important feature has been studied to meet the challenge of future advanced payloads. In the TWIN-MAUS configuration, electrical power and data will be transferred between two containers mounted adjacent to each other
ERROR REDUCTION FOR NUCLEAR BELT WEIGHERS
Nuclear belt weighers have the advantage of contactless measuring bulk goods transported
by conveyor belts while electromechanic belt weighers suffer from mechanical interferences.
Up to now the profile error restricted the applicability of nuclear belt weighers to fine
grained material.
In the paper the nuclear belt weigher and the profile error are analysed. A new scanning
algorithm, implemented on a 8085-microprocessor system resolves the problem of profile
error, improves precision and resolution in comparison to electromechanic belt weighers
and generates an applicability of nuclear belt weighers in new fields
Interferometric Astrometry of the Low-mass Binary Gl 791.2 (= HU Del) Using Hubble Space Telescope Fine Guidance Sensor 3: Parallax and Component Masses
With fourteen epochs of fringe tracking data spanning 1.7y from Fine Guidance
Sensor 3 we have obtained a parallax (pi_abs=113.1 +- 0.3 mas) and perturbation
orbit for Gl 791.2A. Contemporaneous fringe scanning observations yield only
three clear detections of the secondary on both interferometer axes. They
provide a mean component magnitude difference, Delta V = 3.27 +- 0.10. The
period (P = 1.4731 yr) from the perturbation orbit and the semi-major axis (a =
0.963 +- 0.007 AU) from the measured component separations with our parallax
provide a total system mass M_A + M_B = 0.412 +- 0.009 M_sun. Component masses
are M_A=0.286 +- 0.006 M_sun and M_B = 0.126 +- 0.003 M_sun. Gl 791.2A and B
are placed in a sparsely populated region of the lower main sequence
mass-luminosity relation where they help define the relation because the masses
have been determined to high accuracy, with errors of only 2%.Comment: 19 pages, 5 figures. The paper is to appear in August 2000 A
Topological interactions in systems of mutually interlinked polymer rings
The topological interaction arising in interlinked polymeric rings such as
DNA catenanes is considered. More specifically, the free energy for a pair of
linked random walk rings is derived where the distance between two segments
each of which is part of a different ring is kept constant. The topology
conservation is imposed by the Gauss invariant. A previous approach (M.Otto,
T.A. Vilgis, Phys.Rev.Lett. {\bf 80}, 881 (1998)) to the problem is refined in
several ways. It is confirmed, that asymptotically, i.e. for large
where is average size of single random walk ring, the effective
topological interaction (free energy) scales .Comment: 16 pages, 3 figur
Submicron silicon powder production in an aerosol reactor
Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules
Assessment of Oxidative Metabolism in Brown Fat Using PET Imaging
Objective: Although it has been believed that brown adipose tissue (BAT) depots disappear shortly after the perinatal period in humans, positron emission tomography (PET) imaging using the glucose analog 18F-deoxy-d-glucose (FDG) has shown unequivocally the existence of functional BAT in humans, suggesting that most humans have some functional BAT. The objective of this study was to determine, using dynamic oxygen-15 (15O) PET imaging, to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and FDG tracer uptake. Methods: Fourteen adult normal subjects (9F/5M, 30 ± 7 years) underwent triple oxygen scans (H215O, C15O, 15O2) as well as indirect calorimetric measurements at both rest and following exposure to mild cold (16°C). Subjects were divided into two groups (BAT+ and BAT−) based on the presence or absence of FDG tracer uptake (SUV > 2) in cervical–supraclavicular BAT. Blood flow and oxygen extraction fraction (OEF) was calculated from dynamic PET scans at the location of BAT, muscle, and white adipose tissue (WAT). The metabolic rate of oxygen (MRO2) in BAT was determined and used to calculate the contribution of activated BAT to daily energy expenditure (DEE). Results: The median mass of activated BAT in the BAT+ group (5F, age 31 ± 8) was 52.4 g (range 14–68 g) and was 1.7 g (range 0–6.3 g) in the BAT − group (5M/4F, age 29 ± 6). Corresponding SUV values were significantly higher in the BAT+ as compared to the BAT− group (7.4 ± 3.7 vs. 1.9 ± 0.9; p = 0.03). Blood flow values in BAT were significantly higher in the BAT+ group as compared to the BAT− group (13.1 ± 4.4 vs. 5.7 ± 1.1 ml/100 g/min, p = 0.03), but were similar in WAT (4.1 ± 1.6 vs. 4.2 ± 1.8 ml/100 g/min) and muscle (3.7 ± 0.8 vs. 3.3 ± 1.2 ml/100 g/min). Moreover, OEF in BAT was similar in the two groups (0.56 ± 0.18 in BAT+ vs. 0.46 ± 0.19 in BAT−, p = 0.39). Calculated MRO2 values in BAT increased from 0.95 ± 0.74 to 1.62 ± 0.82 ml/100 g/min in the BAT+ group and were significantly higher than those determined in the BAT− group (0.43 ± 0.27 vs. 0.56 ± 0.24, p = 0.67). The DEE associated with BAT oxidative metabolism was highly variable in the BAT+ group, with an average of 5.5 ± 6.4 kcal/day (range 0.57–15.3 kcal/day). Conclusion: BAT thermogenesis in humans accounts for less than 20 kcal/day during moderate cold stress, even in subjects with relatively large BAT depots. Furthermore, due to the large differences in blood flow and glucose metabolic rates in BAT between humans and rodents, the application of rodent data to humans is problematic and needs careful evaluation
Growth Hormone (GH)-Releasing Peptide Stimulation of GH Release from Human Somatotroph Adenoma Cells: Interaction with GH-Releasing Hormone, Thyrotropin- Releasing Hormone, and Octreotide.
The synthetic hexapeptide GH-releasing peptide (GHRP; His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) specifically stimulates GH secretion in humans in vivo and in animals in vitro and in vivo via a still unknown receptor and mechanism. To determine the effect of GHRP on human somatotroph cells in vitro, we stimulated cell cultures derived from 12 different human somatotroph adenomas with GHRP alone and in combination with GH-releasing hormone (GHRH), TRH, and the somatostatin analog octreotide. GH secretion of all 12 adenoma cultures could be stimulated with GHRP, whereas GHRH was active only in 6 adenoma cultures. In GHRH-responsive cell cultures, simultaneous application of GHRH and GHRP had an additive effect on GH secretion. TRH stimulated GH release in 4 of 7 adenoma cultures; in TRH-responsive cell cultures there was also an additive effect of GHRP and TRH on GH secretion. In 5 of 9 adenoma cultures investigated, octreotide inhibited basal GH secretion. In these cell cultures, GHRP-induced GH release was suppressed by octreotide. In 5 of 5 cases, the protein kinase-C inhibitor phloretin partly inhibited GHRP-stimulated GH release, but not basal GH secretion. In summary, GH secretion was stimulated by GHRP in all somatotroph adenomas investigated, indicating that its unknown receptor and signaling pathway are expressed more consistently in somatotroph adenoma cells than those for GHRH, TRH, and somatostatin. Our data give further evidence that GHRP-stimulated GH secretion is mediated by a receptor different from that for GHRH or TRH, respectively, and that protein kinase-C is involved in the signal transduction pathway. Because human somatotroph adenoma cell cultures respond differently to various neuropeptides (GHRH, TRH, somatostatin, and others), they provide a model for further investigation of the mechanism of action of GHRP-induced GH secretion
- …