1,294 research outputs found

    Dynamic Thermal Analysis of a Power Amplifier

    Get PDF
    This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Variational assimilation of Lagrangian data in oceanography

    Get PDF
    We consider the assimilation of Lagrangian data into a primitive equations circulation model of the ocean at basin scale. The Lagrangian data are positions of floats drifting at fixed depth. We aim at reconstructing the four-dimensional space-time circulation of the ocean. This problem is solved using the four-dimensional variational technique and the adjoint method. In this problem the control vector is chosen as being the initial state of the dynamical system. The observed variables, namely the positions of the floats, are expressed as a function of the control vector via a nonlinear observation operator. This method has been implemented and has the ability to reconstruct the main patterns of the oceanic circulation. Moreover it is very robust with respect to increase of time-sampling period of observations. We have run many twin experiments in order to analyze the sensitivity of our method to the number of floats, the time-sampling period and the vertical drift level. We compare also the performances of the Lagrangian method to that of the classical Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page

    Automated motion analysis of bony joint structures from dynamic computer tomography images: A multi-atlas approach

    Get PDF
    Dynamic computer tomography (CT) is an emerging modality to analyze in-vivo joint kinematics at the bone level, but it requires manual bone segmentation and, in some instances, landmark identification. The objective of this study is to present an automated workflow for the assessment of three-dimensional in vivo joint kinematics from dynamic musculoskeletal CT images. The proposed method relies on a multi-atlas, multi-label segmentation and landmark propagation framework to extract bony structures and detect anatomical landmarks on the CT dataset. The segmented structures serve as regions of interest for the subsequent motion estimation across the dynamic sequence. The landmarks are propagated across the dynamic sequence for the construction of bone embedded reference frames from which kinematic parameters are estimated. We applied our workflow on dynamic CT images obtained from 15 healthy subjects on two different joints: thumb base (n = 5) and knee (n = 10). The proposed method resulted in segmentation accuracies of 0.90 ± 0.01 for the thumb dataset and 0.94 ± 0.02 for the knee as measured by the Dice score coefficient. In terms of motion estimation, mean differences in cardan angles between the automated algorithm and manual segmentation, and landmark identification performed by an expert were below 1◦. Intraclass correlation (ICC) between cardan angles from the algorithm and results from expert manual landmarks ranged from 0.72 to 0.99 for all joints across all axes. The proposed automated method resulted in reproducible and reliable measurements, enabling the assessment of joint kinematics using 4DCT in clinical routine

    Dynamic design: manipulation of millisecond timescale motions on the energy landscape of cyclophilin A

    Get PDF
    Proteins need to interconvert between many conformations in order to function, many of which are formed transiently, and sparsely populated. Particularly when the lifetimes of these states approach the millisecond timescale, identifying the relevant structures and the mechanism by which they interconvert remains a tremendous challenge. Here we introduce a novel combination of accelerated MD (aMD) simulations and Markov state modelling (MSM) to explore these ‘excited’ conformational states. Applying this to the highly dynamic protein CypA, a protein involved in immune response and associated with HIV infection, we identify five principally populated conformational states and the atomistic mechanism by which they interconvert. A rational design strategy predicted that the mutant D66A should stabilise the minor conformations and substantially alter the dynamics, whereas the similar mutant H70A should leave the landscape broadly unchanged. These predictions are confirmed using CPMG and R1ρ solution state NMR measurements. By efficiently exploring functionally relevant, but sparsely populated conformations with millisecond lifetimes in silico, our aMD/MSM method has tremendous promise for the design of dynamic protein free energy landscapes for both protein engineering and drug discovery

    Brain age as a surrogate marker for cognitive performance in multiple sclerosis

    Get PDF
    Background: Data from neuro-imaging techniques allow us to estimate a brain's age. Brain age is easily interpretable as "how old the brain looks", and could therefore be an attractive communication tool for brain health in clinical practice. This study aimed to investigate its clinical utility by investigating the relationship between brain age and cognitive performance in multiple sclerosis (MS). Methods: A linear regression model was trained to predict age from brain MRI volumetric features and sex in a healthy control dataset (HC_train, n=1673). This model was used to predict brain age in two test sets: HC_test (n=50) and MS_test (n=201). Brain-Predicted Age Difference (BPAD) was calculated as BPAD=brain age minus chronological age. Cognitive performance was assessed by the Symbol Digit Modalities Test (SDMT). Results: Brain age was significantly related to SDMT scores in the MS_test dataset (r=-0.46, p<.001), and contributed uniquely to variance in SDMT beyond chronological age, reflected by a significant correlation between BPAD and SDMT (r=-0.24, p<.001) and a significant weight (-0.25, p=0.002) in a multivariate regression equation with age. Conclusions: Brain age is a candidate biomarker for cognitive dysfunction in MS and an easy to grasp metric for brain health

    Method for electric field and potential calculations in Hall plates

    Full text link

    Calcitonin Gene-Related Peptide Selectively Relaxes Contractile Responses to Endothelin-1 in Rat Mesenteric Resistance Arteries □ S

    Get PDF
    ABSTRACT We tested the hypothesis that endothelin-1 (ET-1) modulates sensory-motor nervous arterial relaxation by prejunctional and postjunctional mechanisms. Isolated rat mesenteric resistance arteries were investigated with immunohistochemistry, wiremyography, and pharmacological tools. ET A -and ET B -receptors could be visualized on the endothelium and smooth muscle and on periarterial fibers containing calcitonin gene-related peptide (CGRP). Arterial contractile responses to ET-1 (0.25-16 nM) were not modified by blockade of ET B -receptors, NOsynthase, and cyclooxygenase or desensitization of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) with capsaicin. ET-1 reversed relaxing responses to CGRP in depolarized arteries. This effect was inhibited by ET Aantagonists. It was not selective because ET-1 also reversed relaxing responses to Na-nitroprusside (SNP) and because phenylephrine (PHE; 0.25-16 M) similarly reversed relaxing responses to CGRP or SNP. Conversely, contractile responses to ET-1 were, compared with PHE, hypersensitive to the relaxing effects of the TRPV1-agonist capsaicin and to exogenous CGRP, but not to acetylcholine, forskolin, pinacidil, or SNP. In conclusion, ET-1 does not stimulate sensory-motor nervous arterial relaxation, but ET A -mediated arterial contractions are selectively sensitive to relaxation by the sensory neurotransmitter CGRP. This does not involve NO, cAMP, or ATP-sensitive K ϩ channels

    Dominant Glint Based Prey Localization in Horseshoe Bats: A Possible Strategy for Noise Rejection

    Get PDF
    Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues in Rhinolophidae are most likely provided by self-induced amplitude modulations generated by pinnae movement. Amplitude variations in the echo not introduced by the moving pinnae can be considered as noise interfering with the localization process. The amplitude of the dominant glints is very stable. Therefore, these parts of the echoes contain very little noise. However, using only the dominant glints potentially comes at a cost. Depending on the flutter rate of the insect, a limited number of dominant glints will be present in each echo giving the bat a limited number of sample points on which to base localization. We evaluate the feasibility of a strategy under which Rhinolophidae use only dominant glints. We use a computational model of the echolocation task faced by Rhinolophidae. Our model includes the spatial filtering of the echoes by the morphology of the sonar apparatus of Rhinolophus rouxii as well as the amplitude modulations introduced by pinnae movements. Using this model, we evaluate whether the dominant glints provide Rhinolophidae with enough information to perform localization. Our simulations show that Rhinolophidae can use dominant glints in the echoes as carriers for self-induced amplitude modulations serving as localization cues. In particular, it is shown that the reduction in noise achieved by using only the dominant glints outweighs the information loss that occurs by sampling the echo

    Good practices for a literature survey are not followed by authors while preparing scientific manuscripts

    Full text link
    The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with respect to the authors or the journals cited. In this paper, we advocate that authors should follow two mandatory principles to select papers (later reflected in the list of references) while studying the literature for a given research: i) consider similarity of content with the topics investigated, lest very related work should be reproduced or ignored; ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv repository to show that neither of these two criteria is fulfilled in practice
    corecore