2,125 research outputs found

    Ecosystem resistance in the face of climate change: a case study from the freshwater marshes of the Florida Everglades

    Get PDF
    Shaped by the hydrology of the Kissimmee-Okeechobee-Everglades watershed, the Florida Everglades is composed of a conglomerate of wetland ecosystems that have varying capacities to sequester and store carbon. Hydrology, which is a product of the region’s precipitation and temperature patterns combined with water management policy, drives community composition and productivity. As shifts in both precipitation and air temperature are expected over the next 100 years as a consequence of climate change, CO2 dynamics in the greater Everglades are expected to change. To reduce uncertainties associated with climate change and to explore how projected changes in atmospheric CO2 concentration and climate can alter current CO2 exchange rates in Everglades freshwater marsh ecosystems, we simulated fluxes of carbon among the atmosphere, vegetation, and soil using the DAYCENT model. We explored the effects of low, moderate, and high scenarios for atmospheric CO2 (550, 850, and 950 ppm), mean annual air temperature (þ1, þ2.5, and þ4.28C) and precipitation (2, þ7, and þ14%), as predicted by the IPCC for the year 2100 for the region, on CO2 exchange rates in short- and long-hydroperiod wetland ecosystems. Under 100 years of current climate and atmospheric CO2 concentration, Everglades freshwater marsh ecosystems were estimated to be CO2-neutral. As atmospheric CO2 concentration increased and under climate change projections, there were slight shifts in the start and length of the wet season (1 to þ7 days) and a small enhancement in the sink capacity (by 169 to 573 g C m2 century1 ) occurred at both short- and longhydroperiod ecosystems compared to CO2 dynamics under the current climate regime. Over 100 years, rising temperatures increased net CO2 exchange rates (þ1 to 13 g C m2 century1 ) and shifts in precipitation patterns altered cumulative net carbon uptake by þ13 to 46 g C m2 century1 . While changes in ecosystem structure, species composition, and disturbance regimes were beyond the scope of this research, results do indicate that climate change will produce small changes in CO2 dynamics in Everglades freshwater marsh ecosystems and suggest that the hydrologic regime and oligotrophic conditions of Everglades freshwater marshes lowers the ecosystem sensitivity to climate change. Key word

    Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge

    Full text link
    The charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effective interaction for the spin degree of freedom in the long wavelength limit. The anomalous exponent may be determined by measuring nuclear spin relaxation rates in a narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B, Rapid communication

    Elemental energy spectra of cosmic rays measured by CREAM-II

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan

    Measurements of cosmic-ray energy spectra with the 2nd CREAM flight

    Full text link
    During its second Antarctic flight, the CREAM (Cosmic Ray Energetics And Mass) balloon experiment collected data for 28 days, measuring the charge and the energy of cosmic rays (CR) with a redundant system of particle identification and an imaging thin ionization calorimeter. Preliminary direct measurements of the absolute intensities of individual CR nuclei are reported in the elemental range from carbon to iron at very high energy.Comment: 4 pages, 3 figures, presented at XV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2008

    Resolution of Biphasic Binding of the Opioid Antagonist Naltrexone in Brain Membranes

    Full text link
    In synaptosomal membranes from rat brain cortex, in the presence of 150 m M NaC1, the opioid antagonist [ 3 H] naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 n M , respectively. Guanosine-5′-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [ 3 H] naltrexone. As shown by nonlinear least-squares analysis, the Μ opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [ 3 H] naltrexone binding, whereas the Δ-selective ligands [D- Pen 2 , D-Pen 5 ] enkephalin, ICI 174, 864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66340/1/j.1471-4159.1991.tb08288.x.pd

    Energy spectra of cosmic-ray nuclei at high energies

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to ∼1014\sim 10^{14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E−2.66±0.04E^{-2.66 \pm 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/nn energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080±0.0250.080 \pm 0.025 (stat.)±0.025 \pm 0.025 (sys.) at ∼\sim 800 GeV/nn, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical Journa

    Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight

    Full text link
    Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm−2^{-2}. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 ±\pm 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 ±\pm 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 ±\pm 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure

    The Quantum Hall Effect in Drag: Inter-layer Friction in Strong Magnetic Fields

    Full text link
    We study the Coulomb drag between two spatially separated electron systems in a strong magnetic field, one of which exhibits the quantum Hall effect. At a fixed temperature, the drag mimics the behavior of σxx\sigma_{xx} in the quantum Hall system, in that it is sharply peaked near the transitions between neighboring plateaux. We assess the impact of critical fluctuations near the transitions, and find that the low temperature behavior of the drag measures an exponent η\eta that characterizes anomalous low frequency dissipation; the latter is believed to be present following the work of Chalker.Comment: 13 pages, Revtex 2.0, 1 figure upon request, P-93-11-09
    • …
    corecore