2,217 research outputs found

    Mediatic graphs

    Full text link
    Any medium can be represented as an isometric subgraph of the hypercube, with each token of the medium represented by a particular equivalence class of arcs of the subgraph. Such a representation, although useful, is not especially revealing of the structure of a particular medium. We propose an axiomatic definition of the concept of a `mediatic graph'. We prove that the graph of any medium is a mediatic graph. We also show that, for any non-necessarily finite set S, there exists a bijection from the collection M of all the media on a given set S (of states) onto the collection G of all the mediatic graphs on S.Comment: Four axioms replaced by two; two references added; Fig.6 correcte

    Individually-rational collective choice

    Get PDF
    There is a collection of exogenously given socially-feasible sets, and, for each one of them, each individual in a group chooses from an individually-feasible set. The fact that the product of the individually-feasible sets is larger than the socially-feasible set notwithstanding, there arises no conflict between individual choices. Assuming that individual preferences are random, I characterize rationalizable collective choices

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Full text link
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Multi-scenario modelling of learning

    Get PDF
    International audienceDesigning an educational scenario is a sensitive and challenging activity because it is the vector of learning. However, the designed scenario may not correspond to some learners’ characteristics (pace of work, cognitive styles, emotional factors, prerequisite knowledge, …). To personalize the learning task and adapt it gradually to each learner, several scenarios are needed. Adaptation and personalization are difficult because it is necessary on the one hand to know in advance the profiles and on the other hand to produce the multiple scenarios corresponding to these profiles. Our model allows to design many scenarios without knowing the learner profiles beforehand. Furthermore, it offers each learner opportunities to choose a scenario and to change it during their learning process. The model ensures that all announced objectives have enough resources for acquiring knowledge and activities for evaluation

    Crowd Learning with Candidate Labeling: an EM-based Solution

    Get PDF
    Crowdsourcing is widely used nowadays in machine learning for data labeling. Although in the traditional case annotators are asked to provide a single label for each instance, novel approaches allow annotators, in case of doubt, to choose a subset of labels as a way to extract more information from them. In both the traditional and these novel approaches, the reliability of the labelers can be modeled based on the collections of labels that they provide. In this paper, we propose an Expectation-Maximization-based method for crowdsourced data with candidate sets. Iteratively the likelihood of the parameters that model the reliability of the labelers is maximized, while the ground truth is estimated. The experimental results suggest that the proposed method performs better than the baseline aggregation schemes in terms of estimated accuracy.BES-2016-078095 SVP-2014-068574 IT609-13 TIN2016-78365-

    The Social Construction of Conspiracy Beliefs: A Q-Methodology Study of How Ordinary People DefineThem and Judge Their Plausibility

    Get PDF
    Little is known about ordinary people’s understandings of conspiracy beliefs and how these understandings relate to the perspectives of researchers and scholars. Working within a social constructionist epistemological framework, we conducted a Q-methodology study aiming to identify a range of lay perspectives on two key topics: the defining features of conspiracy beliefs; and aspects considered important in judging their plausibility. Fifty-six people (32 men and 24 women), recruited via regional UK Facebook groups, sorted their agreement with a set of statements on each of the two topics. A principal component analysis, followed by varimax rotation, was performed on each data set. Five accounts about the defining features of conspiracy beliefs were identified: that they are false, illogical and harmful; that they are forms of political critique; that there are varied types; that they are entertaining but ineffectual; and that they are held by a self-reinforcing minority. Four accounts about their evaluation were identified: conventional realist criteria; the importance of personal judgement; skeptical realism; and the assessment of critical thinking. The findings are discussed in the context of the literature and limitations of the study are considered. Implications for research and educational and policy interventions are outlined

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page
    corecore