56,028 research outputs found

    The Panther Mountain circular structure, a possible buried meteorite crater

    Get PDF
    Panther Mountain, located near Phoenicia, New York, is part of the Catskill Mountains, which form the eastern end of the Allegheny Plateau in New York. It is a circular mass defined physiographically by an anomalous circular drainage pattern produced by Esopus Creek and its tributary Woodland Creek. The circular valley that rings the mountain is fracture-controlled; where bedrock is exposed, it shows a joint density 5 to 10 times greater than that on either side of the valley. Where obscured by alluvial valley fill, the bedrock's low seismic velocity suggests that this anomalous fracturing is continuous in the bedrock underlying the rim valley. North-south and east-west gravity and magnetic profiles were made across the structure. Terrane-corrected, residual gravity profiles show an 18-mgal negative anomaly, and very steep gradients indicate a near-surface source. Several possible explanations of the gravity data were modeled. We conclude that the Panther Mountain circular structure is probably a buried meteorite crater that formed contemporaneously with marine or fluvial sedimentation during Silurian or Devonian time. An examination of drill core and cuttings in the region is underway to search for ejecta deposits and possible seismic and tsunami effects in the sedimentary section. Success would result in both dating the impact and furnishing a chronostratigraphic marker horizon

    Non-collinear interaction of photons with orbital angular momentum

    Get PDF
    We elucidate the consequences of a phase-matching theory that describes second-harmonic generation of two non-collinear incident light beams that carry orbital angular momentum (OAM). More specifically, the two incident beams generate a third that, depending on the incident OAM, may experience a significantly smaller conversion efficiency in comparison to that based on the conventional phase-matching theory. This is the case even for incident angles substantially less than those required for non-conservation of OAM in the nonlinear interaction. Experiments are performed under different conditions and are in excellent agreement with the theory. Our results have implications beyond the specific case studied here of second-harmonic generation, in particular for parametric down-conversion of photons.Comment: 6 pages, 4 figure

    Remodelling sheltered housing and residential care homes to extra care housing: advice to housing and care providers

    Get PDF

    Signal-to-Noise Eigenmode Analysis of the Two-Year COBE Maps

    Full text link
    To test a theory of cosmic microwave background fluctuations, it is natural to expand an anisotropy map in an uncorrelated basis of linear combinations of pixel amplitudes --- statistically-independent for both the noise and the signal. These S/NS/N-eigenmodes are indispensible for rapid Bayesian analyses of anisotropy experiments, applied here to the recently-released two-year COBE {\it dmr} maps and the {\it firs} map. A 2-parameter model with an overall band-power and a spectral tilt νΔT\nu_{\Delta T} describes well inflation-based theories. The band-powers for {\it all} the {\it dmr} 53,90,3153,90,31 aa+bb GHz and {\it firs} 170 GHz maps agree, {(1.1±0.1)×10−5}1/2\{(1.1\pm 0.1)\times 10^{-5}\}^{1/2}, and are largely independent of tilt and degree of (sharp) S/NS/N-filtering. Further, after optimal S/NS/N-filtering, the {\it dmr} maps reveal the same tilt-independent large scale features and correlation function. The unfiltered {\it dmr} 5353 aa+bb index νΔT+1\nu_{\Delta T}+1 is 1.4±0.41.4\pm 0.4; increasing the S/NS/N-filtering gives a broad region at (1.0--1.2)±\pm0.5, a jump to (1.4--1.6)±\pm0.5, then a drop to 0.8, the higher values clearly seen to be driven by S/NS/N-power spectrum data points that do not fit single-tilt models. These indices are nicely compatible with inflation values (∼\sim0.8--1.2), but not overwhelmingly so.Comment: submitted to Phys.Rev.Letters, 4 pages, uuencoded compressed PostScript; also bdmr2.ps.Z, via anonymous ftp to ftp.cita.utoronto.ca, cd to /pub/dick/yukawa; CITA-94-2
    • …
    corecore