27 research outputs found

    Collapsing Perfect Fluid in Higher Dimensional Spherical Spacetimes

    Get PDF
    The general metric for N-dimensional spherically symmetric and conformally flat spacetimes is given, and all the homogeneous and isotropic solutions for a perfect fluid with the equation of state p=αρp = \alpha \rho are found. These solutions are then used to model the gravitational collapse of a compact ball. It is found that when the collapse has continuous self-similarity, the formation of black holes always starts with zero mass, and when the collapse has no such a symmetry, the formation of black holes always starts with a mass gap.Comment: Class. Quantum Grav. 17 (2000) 2589-259

    Trapped surfaces, horizons and exact solutions in higher dimensions

    Get PDF
    A very simple criterion to ascertain if (D-2)-surfaces are trapped in arbitrary D-dimensional Lorentzian manifolds is given. The result is purely geometric, independent of the particular gravitational theory, of any field equations or of any other conditions. Many physical applications arise, a few shown here: a definition of general horizon, which reduces to the standard one in black holes/rings and other known cases; the classification of solutions with a (D-2)-dimensional abelian group of motions and the invariance of the trapping under simple dimensional reductions of the Kaluza-Klein/string/M-theory type. Finally, a stronger result involving closed trapped surfaces is presented. It provides in particular a simple sufficient condition for their absence.Comment: 7 pages, no figures, final version to appear in Class. Quantum Gra

    Gravitational collapse of massless scalar field and radiation fluid

    Get PDF
    Several classes of conformally-flat and spherically symmetric exact solutions to the Einstein field equations coupled with either a massless scalar field or a radiation fluid are given, and their main properties are studied. It is found that some represent the formation of black holes due to the gravitational collapse of the matter fields. When the spacetimes have continuous self-similarity (CSS), the masses of black holes take a scaling form MBH(PP)γM_{BH} \propto (P - P^{*})^{\gamma}, where γ=0.5\gamma = 0.5 for massless scalar field and γ=1\gamma = 1 for radiation fluid. The reasons for the difference between the values of γ\gamma obtained here and those obtained previously are discussed. When the spacetimes have neither CSS nor DSS (Discrete self-similarity), the masses of black holes always turn on with finite non-zero values.Comment: Two figures have been removed, and the text has been re-written. To appear in Phys. Rev.

    Equilibrium configurations from gravitational collapse

    Get PDF
    We develop here a new procedure within Einstein's theory of gravity to generate equilibrium configurations that result as the final state of gravitational collapse from regular initial conditions. As a simplification, we assume that the collapsing fluid is supported only by tangential pressure. We show that the equilibrium geometries generated by this method form a subset of static solutions to the Einstein equations, and that they can either be regular or develop a naked singularity at the center. When a singularity is present, there are key differences in the properties of stable circular orbits relative to those around a Schwarzschild black hole with the same mass. Therefore, if an accretion disk is present around such a naked singularity it could be observationally distinguished from a disk around a black hole.Comment: 13 pages, 3 figure. Replaced with published version, several changes made according to referee's advis

    Analyzing and Modeling Real-World Phenomena with Complex Networks: A Survey of Applications

    Get PDF
    The success of new scientific areas can be assessed by their potential for contributing to new theoretical approaches and in applications to real-world problems. Complex networks have fared extremely well in both of these aspects, with their sound theoretical basis developed over the years and with a variety of applications. In this survey, we analyze the applications of complex networks to real-world problems and data, with emphasis in representation, analysis and modeling, after an introduction to the main concepts and models. A diversity of phenomena are surveyed, which may be classified into no less than 22 areas, providing a clear indication of the impact of the field of complex networks.Comment: 103 pages, 3 figures and 7 tables. A working manuscript, suggestions are welcome

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    Get PDF
    Xenarthrans – anteaters, sloths, and armadillos – have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with 24 domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, ten anteaters, and six sloths. Our dataset includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data-paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the south of the USA, Mexico, and Caribbean countries at the northern portion of the Neotropics, to its austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n=5,941), and Cyclopes sp. has the fewest (n=240). The armadillo species with the most data is Dasypus novemcinctus (n=11,588), and the least recorded for Calyptophractus retusus (n=33). With regards to sloth species, Bradypus variegatus has the most records (n=962), and Bradypus pygmaeus has the fewest (n=12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other datasets of Neotropical Series which will become available very soon (i.e. Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans dataset

    Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology

    Full text link
    corecore