133 research outputs found

    Bovine Viral Diarrhea Virus Multiorgan Infection in Two White-Tailed Deer in Southeastern South Dakota

    Get PDF
    The susceptibility of wild ruminants, especially cervids, to bovine viral diarrhea virus (BVDV) has remained an enigma. Two white-tailed deer (Odocoileus virginianus) were submitted to the Animal Disease Research and Diagnostic Laboratory (ADRDL) in the fall of 2003 by the South Dakota Game Fish and Parks for chronic wasting disease (CWD) testing. Both animals were CWD negative. The animals were necropsied and histopathology, viral antigen detection, and virus isolation were performed. A noncytopathic (NCP) BVDV was isolated from the lungs and several other tissues of both animals. Formalin-fixed ear notches from both animals were positive for BVDV antigen by immunohistochemistry. The BVDV isolates were typed with the use of polymerase chain reaction in 59 untranslated region (UTR) and one isolate was typed a Type 2a and the other a Type 1b. Future field surveys to determine the incidence of BVDV along with experimental studies to determine if whitetailed deer fawns can be persistently infected with BVDV are neede

    Kinetics of UV254 inactivation of selected viral pathogens in a static system

    Get PDF
    Aims:  The objective of this study was to estimate UV254 inactivation constants for four viral pathogens: influenza virus type A, porcine respiratory and reproductive syndrome virus (PRRSV), bovine viral diarrhoea virus (BVDV) and reovirus. Methods and Results:  Viruses in culture medium were exposed to one of nine doses of UV254 and then titrated for infectious virus. Analysis showed that viral inactivation by UV254 was more accurately described by a two-stage inactivation model vs a standard one-stage inactivation model. Conclusions:  The results provided evidence for the existence of two heterogeneous viral subpopulations among the viruses tested, one highly susceptible to UV254 inactivation and the other more resistant. Importantly, inactivation constants based on the one-stage inactivation model would have underestimated the UV254 dose required for the inactivation of these viruses under the conditions of the experiment. Significance and Impact of the Study:  To improve the accuracy of estimates, it is recommended that research involving the inactivation of micro-organisms evaluates inactivation kinetics using both one-stage and two-stage models. These results will be of interest to persons responsible for microbial agents under laboratory or field conditions

    Development of a novel diagnostic test for detection of bovine viral diarrhea persistently infected animals using hair

    Get PDF
    The purpose of this study was to determine whether manually plucked hairs might serve as an alternative sample for a quantitative real time polymerase chain reaction (qRT-PCR) testing. Twenty three, 1~3 week old, non-bovine viral diarrhea virus (BVDV) vaccinated calves, found to be positive for BVDV by immunohistochemical staining, were selected and hairs were manually plucked from the ear. qRT-PCR was performed on samples consisting of more than 30 hairs (30~100) and whole blood. All 23 animals were positive for the virus by qRT-PCR performed on the whole blood and when samples of more than 30 hairs were assayed. Additionally, qRT-PCR was performed on groups of 10 and 20 hairs harvested from 7 out of 23 immunohistochemical staining-positive calves. When groups of 20 and 10 hairs were tested, 6 and 4 animals, respectively, were positive for the virus

    Induction of T Lymphocytes Specific for Bovine Viral Diarrhea Virus in Calves with Maternal Antibody

    Get PDF
    Passive antibody to bovine viral diarrhea virus (BVDV) acquired through colostrum intake may interfere with the development of a protective immune response by calves to this virus. The objective of this study was to determine if calves, with a high level of maternal antibody to bovine viral diarrhea virus (BVDV), develop CD4+, CD8+, or γδ T lymphocyte responses to BVDV in the absence of a measurable humoral immune response. Colostrum or milk replacer fed calves were challenged with virulent BVDV at 2-5 weeks of age and/or after maternal antibody had waned. Calves exposed to BVDV while passive antibody levels were high did not mount a measurable humoral immune response to BVDV. However, compared to nonexposed animals, these animals had CD4+, CD8+, and γδ T lymphocytes that were activated by BVDV after exposure to in vitro BVDV. The production of IFNγ by lymphocytes after in vitro BVDV exposure was also much greater in lymphocytes from calves exposed to BVDV in the presence of maternal antibody compared to the nonexposed calves. These data indicate that calves exposed to BVDV while maternal antibody levels are high can develop antigen specific CD4+, CD8+, and γδ T lymphocytes in the absence of an active antibody response. A manuscript presented separately demonstrates that the calves with T lymphocytes specific for BVDV in this study were also protected from virulent BVDV genotype 2 challenge after maternal antibody became undetectable

    Detection of PIGO-Deficient Cells Using Proaerolysin: A Valuable Tool to Investigate Mechanisms of Mutagenesis in the DT40 Cell System

    Get PDF
    While isogenic DT40 cell lines deficient in DNA repair pathways are a great tool to understand the DNA damage response to genotoxic agents by a comparison of cell toxicity in mutants and parental DT40 cells, no convenient mutation assay for mutagens currently exists for this reverse-genetic system. Here we establish a proaerolysin (PA) selection-based mutation assay in DT40 cells to identify glycosylphosphatidylinositol (GPI)-anchor deficient cells. Using PA, we detected an increase in the number of PA-resistant DT40 cells exposed to MMS for 24 hours followed by a 5-day period of phenotype expression. GPI anchor synthesis is catalyzed by a series of phosphatidylinositol glycan complementation groups (PIGs). The PIG-O gene is on the sex chromosome (Chromosome Z) in chicken cells and is critical for GPI anchor synthesis at the intermediate step. Among all the mutations detected in the sequence levels observed in DT40 cells exposed to MMS at 100 µM, we identified that ∼55% of the mutations are located at A:T sites with a high frequency of A to T transversion mutations. In contrast, we observed no transition mutations out of 18 mutations. This novel assay for DT40 cells provides a valuable tool to investigate the mode of action of mutations caused by reactive agents using a series of isogenic mutant DT40 cells

    Stability of Yellow Fever Virus under Recombinatory Pressure as Compared with Chikungunya Virus

    Get PDF
    Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely
    • …
    corecore