35,925 research outputs found
Workpiece positioning vise
A pair of jaw assemblies simultaneously driven in opposed reciprocation by a single shaft has oppositely threaded sections to automatically center delicate or brittle workpieces such as lithium fluoride crystal beneath the blade of a crystal cleaving machine. Both jaw assemblies are suspended above the vise bed by a pair of parallel guide shafts attached to the vise bed. Linear rolling bearings, fitted around the guide shafts and firmly held by opposite ends of the jaw assemblies, provide rolling friction between the guide shafts and the jaw assemblies. A belleville washer at one end of the drive shaft and thrust bearings at both drive shaft ends hold the shaft in compression between the vise bed, thereby preventing wobble of the jaw assemblies due to wear between the shaft and vise bed
Cosmic antimatter annihilation and the gamma-ray background spectrum
Cosmic antimatter annihilation and gamma ray background spectru
Prestige drives epistemic inequality in the diffusion of scientific ideas
The spread of ideas in the scientific community is often viewed as a
competition, in which good ideas spread further because of greater intrinsic
fitness, and publication venue and citation counts correlate with importance
and impact. However, relatively little is known about how structural factors
influence the spread of ideas, and specifically how where an idea originates
might influence how it spreads. Here, we investigate the role of faculty hiring
networks, which embody the set of researcher transitions from doctoral to
faculty institutions, in shaping the spread of ideas in computer science, and
the importance of where in the network an idea originates. We consider
comprehensive data on the hiring events of 5032 faculty at all 205
Ph.D.-granting departments of computer science in the U.S. and Canada, and on
the timing and titles of 200,476 associated publications. Analyzing five
popular research topics, we show empirically that faculty hiring can and does
facilitate the spread of ideas in science. Having established such a mechanism,
we then analyze its potential consequences using epidemic models to simulate
the generic spread of research ideas and quantify the impact of where an idea
originates on its longterm diffusion across the network. We find that research
from prestigious institutions spreads more quickly and completely than work of
similar quality originating from less prestigious institutions. Our analyses
establish the theoretical trade-offs between university prestige and the
quality of ideas necessary for efficient circulation. Our results establish
faculty hiring as an underlying mechanism that drives the persistent epistemic
advantage observed for elite institutions, and provide a theoretical lower
bound for the impact of structural inequality in shaping the spread of ideas in
science.Comment: 10 pages, 8 figures, 1 tabl
Planetary atlases
Two kinds of planetary map atlases are in production. Atlases of the first kind contain reduced-scale versions of maps in hard-bound books with dimensions of 11 x 14 inches. These new atlases are intended to: (1) provide concise but comprehensive references to the geography of the planets needed by planetary scientists and others; and (2) allow inexpensive access to the planetary map dataset without requiring acquisition and examination of tens or hundreds of full-size map sheets. Two such atlases have been published and a third is in press. Work was begun of an Atlas of the Satellite of the Outer Planets. The second kind of atlas is a popular or semi-technical version designed for commercial publication and distribution. The first edition, The Atlas of the Solar System, is nearly ready for publication. New funding and contracting constraints now make it unlikely that the atlas can be published in the format originally planned. Currently, the possibility of publishing the maps through the U.S. Geological Survey as a series of folios in the I-map series is being explored. The maps are global views of each solid-surface body of the Solar System. Each map shows airbrushed relief, albedo, and, where available, topography. A set of simplified geologic maps is also included. All of the maps are on equal-area projections. Scales are 1:40,000,000 for the Earth and Venus; 1:2,000,000 for the Saturnian satellites Mimas and Enceladus and the Uranian satellite Miranda; 1:100,000 for the Martian satellites, Phobos and Deimos; and 1:10,000,000 for all other bodies
CO mapping of the Orion molecular cloud: The influence of star formation on cloud structure
Regions of massive star formation have long been believed to have a profound influence on the structure of their surrounding molecular clouds. The ways in which massive star formation has altered the structure and kinematics of the Orion Molecular Cloud are discussed. The data to be discussed consists of a large scale map of the CO J=1-0 emission from approximately 3 square degrees of OMC-1. During 1985, the Five College Radio Astronomy Observatory 14M antenna was used to map a 2 deg x 1 deg region centered on alpha(1950) = 5(h)33(m)00(s) delta(1950) = -5 deg 30 min. The region mapped in 1985 covers the well known HII regions M42, M43, and NGC1977, and the CO map contains abundant evidence of the interaction between these regions and the molecular cloud. Indeed, the global structure of the cloud appears to have been strongly influenced by the continuous formation of massive stars within the cloud. Individual instances of some of these features are discussed. There appear to be two classes of features which are indicative of this interaction: CO bright rims and CO holes. During 1986, we have undertaken further mapping of OMC-1 to the south of the region covered by the 1985 map. This portion of the cloud contains significant regions of star formation, but O star formation has not occured and large HII regions have not developed to alter the appearance of the cloud. A detailed map of this region is thus an opportunity to view the structure of the molecular cloud before it has been altered by massive star formation. Preliminary analysis of data obtained in this region suggests that the structure and kinematics of the southern portion of the Orion cloud are indeed dramatically different from those of the region previously mapped. Comparison of the two regions thus supports models of the development of structure in molecular clouds through interaction with the HII regions formed within them
Changes in Myonuclear Number During Postnatal Growth – Implications for AAV Gene Therapy for Muscular Dystrophy
Adult skeletal muscle is a relatively stable tissue, as the multinucleated muscle fibres contain post-mitotic myonuclei. During early postnatal life, muscle growth occurs by the addition of skeletal muscle stem cells (satellite cells) or their progeny to growing muscle fibres. In Duchenne muscular dystrophy, which we shall use as an example of muscular dystrophies, the muscle fibres lack dystrophin and undergo necrosis. Satellite-cell mediated regeneration occurs, to repair and replace the necrotic muscle fibres, but as the regenerated muscle fibres still lack dystrophin, they undergo further cycles of degeneration and regeneration.
AAV gene therapy is a promising approach for treating Duchenne muscular dystrophy. But for a single dose of, for example, AAV coding for microdystrophin, to be effective, the treated myonuclei must persist, produce sufficient dystrophin and a sufficient number of nuclei must be targeted. This latter point is crucial as AAV vector remains episomal and does not replicate in dividing cells. Here, we describe and compare the growth of skeletal muscle in rodents and in humans and discuss the evidence that myofibre necrosis and regeneration leads to the loss of viral genomes within skeletal muscle. In addition, muscle growth is expected to lead to the dilution of the transduced nuclei especially in case of very early intervention, but it is not clear if growth could result in insufficient dystrophin to prevent muscle fibre breakdown. This should be the focus of future studies
- …