9,674 research outputs found

    Tunneling, self-trapping and manipulation of higher modes of a BEC in a double well

    Get PDF
    We consider an atomic Bose-Einstein condensate trapped in a symmetric one-dimensional double well potential in the four-mode approximation and show that the semiclassical dynamics of the two ground state modes can be strongly influenced by a macroscopic occupation of the two excited modes. In particular, the addition of the two excited modes already unveils features related to the effect of dissipation on the condensate. In general, we find a rich dynamics that includes Rabi oscillations, a mixed Josephson-Rabi regime, self-trapping, chaotic behavior, and the existence of fixed points. We investigate how the dynamics of the atoms in the excited modes can be manipulated by controlling the atomic populations of the ground states.Comment: 12 pages, 5 figure

    Substructure Boosts to Dark Matter Annihilation from Sommerfeld Enhancement

    Full text link
    The recently introduced Sommerfeld enhancement of the dark matter annihilation cross section has important implications for the detection of dark matter annihilation in subhalos in the Galactic halo. In addition to the boost to the dark matter annihilation cross section from the high densities of these subhalos with respect to the main halo, an additional boost caused by the Sommerfeld enhancement results from the fact that they are kinematically colder than the Galactic halo. If we further believe the generic prediction of CDM that in each subhalo there is an abundance of substructure which is approximately self-similar to that of the Galactic halo, then I show that additional boosts coming from the density enhancements of these small substructures and their small velocity dispersions enhance the dark matter annihilation cross section even further. I find that very large boost factors (10510^5 to 10910^9) are obtained in a large class of models. The implications of these boost factors for the detection of dark matter annihilation from dwarf Spheroidal galaxies in the Galactic halo are such that, generically, they outshine the background gamma-ray flux and are detectable by the Fermi Gamma-ray Space Telescope.Comment: PRD in pres

    Aging and ultra-slow equilibration in concentrated colloidal hard spheres

    Full text link
    We study the dynamic behaviour of concentrated colloidal hard spheres using Time Resolved Correlation, a light scattering technique that can detect the slow evolution of the dynamics in out-of-equilibrium systems. Surprisingly, equilibrium is reached a very long time after sample initialization, the non-stationary regime lasting up to three orders of magnitude more than the relaxation time of the system. Before reaching equilibrium, the system displays unusual aging behaviour. The intermediate scattering function decays faster than exponentially and its relaxation time evolves non-monotonically with sample age.Comment: Submitted to the proceedings of the 6th EPS Liquid Matter Conference, Utrecht 2-6 July 200

    Spatial fluctuations in an optical parametric oscillator below threshold with an intracavity photonic crystal

    Get PDF
    We show how to control spatial quantum correlations in a multimode degenerate optical parametric oscillator type I below threshold by introducing a spatially inhomogeneous medium, such as a photonic crystal, in the plane perpendicular to light propagation. We obtain the analytical expressions for all the correlations in terms of the relevant parameters of the problem and study the number of photons, entanglement, squeezing, and twin beams. Considering different regimes and configurations we show the possibility to tune the instability thresholds as well as the quantumness of correlations by breaking the translational invariance of the system through a photonic crystal modulation.Comment: 12 pages, 7 figure

    TeV scale resonant leptogenesis from supersymmetry breaking

    Full text link
    We propose a model of TeV-scale resonant leptogenesis based upon recent models of the generation of light neutrino masses from supersymmetry-breaking effects with TeV-scale right-handed (rhd) neutrinos, NiN_i. The model leads to naturally large cosmological lepton asymmetries via the resonant behaviour of the one-loop self-energy contribution to NiN_i decay. Our model addresses the primary problems of previous phenomenological studies of low-energy leptogenesis: a rational for TeV-scale rhd neutrinos with small Yukawa couplings so that the out-of equilibrium condition for NiN_i decay is satisfied; the origin of the tiny, but non-zero mass splitting required between at least two NiN_i masses; and the necessary non-trivial breaking of flavour symmetries in the rhd neutrino sector. The low mass-scale of the rhd neutrinos and their superpartners, and the TeV-scale AA-terms automatically contained within the model offer opportunities for partial direct experimental tests of this leptogenesis mechanism at future colliders.Comment: 10 Pages latex, version for JHE

    An automatic system for crystal growth studies at constant supersaturation

    Get PDF
    An automatic system for growing crystals from seeded supersaturated solutions at constant supersaturation is described. Control of burettes and data acquisition are controlled by computer. The system was tested with a study of the calcium oxalate kinetics of crystal growth

    Confining Flux Tubes in a Current Algebra Approach

    Full text link
    We describe flux tubes and their interactions in a low energy sigma model induced by SU(Nf)→SO(Nf)SU({N_f}) \rightarrow SO({N_f}) flavor symmetry breaking in SO(Nc)SO(N_c) QCD. Unlike standard QCD, this model allows gauge confinement to manifest itself in the low energy theory, which has unscreened spinor color sources and global Z2Z_2 flux tubes. We construct the flux tubes and show how they mediate the confinement of spinor sources. We further examine the flux tubes' quantum stability, spectrum and interactions. We find that flux tubes are Alice strings, despite ambiguities in defining parallel transport. Furthermore, twisted loops of flux tube support skyrmion number, just as gauged Alice strings form loops that support monopole charge. This model, while phenomenologically nonviable, thus affords a perspective on both the dynamics of confinement and on subtleties which arise for global Alice strings.Comment: 29 pages (REVTEX) plus 6 figures, two corrections in the final section and added reference

    Charge Violation and Alice Behavior in Global and Textured Strings

    Get PDF
    Spontaneous breaking of global symmetries can produce ``Alice'' strings: line defects which make unbroken symmetries multivalued, induce apparent charge violation via Aharonov-Bohm interactions, and form point defects when twisted into loops. We demonstrate this behavior for both divergent and textured global Alice strings. Both adiabatically scatter charged particles via effective Wilson lines. For textured Alice strings, such Wilson lines occur at all radii, and are multivalued only inside the string. This produces measurable effects, including path-dependent charge violation.Comment: 32 pages, 2 epsfigs, Revte
    • …
    corecore