57,309 research outputs found
Water depletion in the disk atmosphere of Herbig AeBe stars
We present high resolution (R = 100,000) L-band spectroscopy of 11 Herbig
AeBe stars with circumstellar disks. The observations were obtained with the
VLT/CRIRES to detect hot water and hydroxyl radical emission lines previously
detected in disks around T Tauri stars. OH emission lines are detected towards
4 disks. The OH P4.5 (1+,1-) doublet is spectrally resolved as well as the
velocity profile of each component of the doublet. Its characteristic
double-peak profile demonstrates that the gas is in Keplerian rotation and
points to an emitting region extending out to ~ 15-30 AU. The OH, emission
correlates with disk geometry as it is mostly detected towards flaring disks.
None of the Herbig stars analyzed here show evidence of hot water vapor at a
sensitivity similar to that of the OH lines. The non-detection of hot water
vapor emission indicates that the atmosphere of disks around Herbig AeBe stars
are depleted of water molecules. Assuming LTE and optically thin emission we
derive a lower limit to the OH/H2O column density ratio > 1 - 25 in contrast to
T Tauri disks for which the column density ratio is 0.3 -- 0.4.Comment: Accepted for publication in Ap
Finding the Minimum-Weight k-Path
Given a weighted -vertex graph with integer edge-weights taken from a
range , we show that the minimum-weight simple path visiting
vertices can be found in time \tilde{O}(2^k \poly(k) M n^\omega) = O^*(2^k
M). If the weights are reals in , we provide a
-approximation which has a running time of \tilde{O}(2^k
\poly(k) n^\omega(\log\log M + 1/\varepsilon)). For the more general problem
of -tree, in which we wish to find a minimum-weight copy of a -node tree
in a given weighted graph , under the same restrictions on edge weights
respectively, we give an exact solution of running time \tilde{O}(2^k \poly(k)
M n^3) and a -approximate solution of running time
\tilde{O}(2^k \poly(k) n^3(\log\log M + 1/\varepsilon)). All of the above
algorithms are randomized with a polynomially-small error probability.Comment: To appear at WADS 201
Invariant manifolds and the geometry of front propagation in fluid flows
Recent theoretical and experimental work has demonstrated the existence of
one-sided, invariant barriers to the propagation of reaction-diffusion fronts
in quasi-two-dimensional periodically-driven fluid flows. These barriers were
called burning invariant manifolds (BIMs). We provide a detailed theoretical
analysis of BIMs, providing criteria for their existence, a classification of
their stability, a formalization of their barrier property, and mechanisms by
which the barriers can be circumvented. This analysis assumes the sharp front
limit and negligible feedback of the front on the fluid velocity. A
low-dimensional dynamical systems analysis provides the core of our results.Comment: 14 pages, 11 figures. To appear in Chaos Focus Issue:
Chemo-Hydrodynamic Patterns and Instabilities (2012
Evaporation and growth of crystals - propagation of step density compression waves at vicinal surfaces
We studied the step dynamics during crystal sublimation and growth in the
limit of fast surface diffusion and slow kinetics of atom attachment-detachment
at the steps. For this limit we formulate a model free of the quasi-static
approximation in the calculation of the adatom concentration on the terraces at
the crystal surface. Such a model provides a relatively simple way to study the
linear stability of a step train in a presence of step-step repulsion and an
absence of destabilizing factors (as Schwoebel effect, surface electromigration
etc.). The central result is that a critical velocity of the steps in the train
exists which separates the stability and instability regimes. When the step
velocity exceeds its critical value the plot of these trajectories manifests
clear space and time periodicity (step density compression waves propagate on
the vicinal surface). This ordered motion of the steps is preceded by a
relatively short transition period of disordered step dynamics.Comment: 18 pages, 6 figure
Dissociation spectrum of H from a short, intense infrared laser pulse: vibration structure and focal volume effects
The dissociation spectrum of the hydrogen molecular ion by short intense
pulses of infrared light is calculated. The time-dependent Schr\"odinger
equation is discretized and integrated in position and momentum space. For
few-cycle pulses one can resolve vibrational structure that commonly arises in
the experimental preparation of the molecular ion from the neutral molecule. We
calculate the corresponding energy spectrum and analyze the dependence on the
pulse time-delay, pulse length, and intensity of the laser for nm. We conclude that the proton spectrum is a both a sensitive probe of the
vibrational dynamics and the laser pulse. Finally we compare our results with
recent measurements of the proton spectrum for 55 fs pulses using a Ti:Sapphire
laser (nm). Integrating over the laser focal volume, for the
intensity W cm, we find our results are in
excellent agreement with these experiments.Comment: 17 pages, 8 figures, preprin
Optimal conditions for observing Josephson oscillations in a double-well Bose-gas condensate
The Josephson oscillations between condensates in a double-well trap are
known theoretically to be strongly effected by the mean field interaction in
dilute atomic gases. The most important effect is that the amplitude of
oscillation in the relative population of the two wells is greatly suppressed
due to the mean field interaction, which can make it difficult to observe the
Josephson effect. Starting from the work of Raghavan, Smerzi, Fantoni, and
Shenoy, we calculate the maximum amplitude of oscillation in the relative
population as a function of various physical parameters, such as the trap
aspect ratio, the Gaussian barrier height and width, and the total number of
atoms in the condensate. We also compare results for Na and
Rb. Our main new result is that the maximum amplitude of oscillation
depends strongly on the aspect ratio of the harmonic trap and can be maximized
in a ``pancake'' trap, as used in the experiment of Anderson and Kasevich.Comment: 8 pages with 5 embeded figure
Hyperfine frequency shift in two-dimensional atomic hydrogen
We propose the explanation of a surprisingly small hyperfine frequency shift
in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid
helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced
triplet-singlet transitions of atomic pairs in the fully spin-polarized sample
are forbidden. The apparent nonzero shift is associated with the
density-dependent wall shift of the hyperfine constant and the pressure shift
due to the presence of H atoms in the hyperfine state not involved in the
observed transition. The interaction of adsorbed atoms with one
another effectively decreases the binding energy and, consequently, the wall
shift by the amount proportional to their density. The pressure shift of the
resonance comes from the fact that the impurity -state atoms
interact differently with the initial -state and final -state atoms and
is also linear in density. The net effect of the two contributions, both
specific for 2D hydrogen, is comparable with the experimental observation. To
our knowledge, this is the first mentioning of the density-dependent wall
shift. We also show that the difference between the triplet and singlet
scattering lengths of H atoms, pm, is exactly twice smaller
than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101},
263003 (2008).Comment: 4 pages, no figure
A discrete time-dependent method for metastable atoms in intense fields
The full-dimensional time-dependent Schrodinger equation for the electronic
dynamics of single-electron systems in intense external fields is solved
directly using a discrete method.
Our approach combines the finite-difference and Lagrange mesh methods. The
method is applied to calculate the quasienergies and ionization probabilities
of atomic and molecular systems in intense static and dynamic electric fields.
The gauge invariance and accuracy of the method is established. Applications to
multiphoton ionization of positronium and hydrogen atoms and molecules are
presented. At very high intensity above saturation threshold, we extend the
method using a scaling technique to estimate the quasienergies of metastable
states of the hydrogen molecular ion. The results are in good agreement with
recent experiments.Comment: 10 pages, 9 figure, 4 table
- …