270 research outputs found

    Change of Electronic Structure Induced by Magnetic Transitions in CeBi

    Full text link
    The temperature dependence of the electronic structure of CeBi arising from two types of antiferromagnetic transitions based on optical conductivity (σ(ω)\sigma(\omega)) was observed. The σ(ω)\sigma(\omega) spectrum continuously and discontinuously changes at 25 and 11 K, respectively. Between these temperatures, two peaks in the spectrum rapidly shift to the opposite energy sides as the temperature changes. Through a comparison with the band calculation as well as with the theoretical σ(ω)\sigma(\omega) spectrum, this peak shift was explained by the energy shift of the Bi 6p6p band due to the mixing effect between the Ce 4fΓ84f \Gamma_8 and Bi 6p6p states. The single-layer antiferromagnetic (+−+-) transition from the paramagnetic state was concluded to be of the second order. The marked changes in the σ(ω)\sigma(\omega) spectrum at 11 K, however, indicated the change in the electronic structure was due to a first-order-like magnetic transition from a single-layer to a double-layer (++−−++--) antiferromagnetic phase.Comment: 4 pages, to be published in J. Phys. Soc. Jpn. 73 Aug. (2004

    The structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n

    Full text link
    The structures and thermoelectric properties of the (Bi2)m(Bi2Te3)n homologous series, derived from stacking hexagonal Bi2 and Bi2Te3 blocks, are reported. The end-members of this series are metallic Bi and semiconducting Bi2Te3; nine members of the series have been studied. The structures form an infinitely adaptive series and a unified structural description based on a modulated structure approach is presented. The as-synthesized samples have thermopowers (S) that vary from n-type for Bi2Te3 to p-type for phases rich in Bi2 blocks but with some Bi2Te3 blocks present, to n-type again for Bi metal. The thermoelectric power factor (S2/rho) is highest for Bi metal (43 muW/K2 cm at 130 K), followed by Bi2Te3 (20 muW/K2 cm at 270 K), while Bi2Te (m:n = 5:2) and Bi7Te3 (m:n = 15:6) have 9 muW/K2 cm (at 240 K) and 11 muW/K2 (at 270 K), respectively. The results of doping studies with Sb and Se into Bi2Te are reported.Comment: accepted for publication in PR

    Effect of finite temperature and uniaxial anisotropy on the Casimir effect with three-dimensional topological insulators

    Full text link
    In this work we study the Casimir effect with three-dimensional topological insulators including the effects of temperature and uniaxial anisotropy. Although precise experimental values for the optical properties of these materials are yet to be established, qualitative analysis is still possible. We find qualitatively that the reported repulsive behavior and the equilibrium point are robust features of the system, and are favored by low temperatures and the enhancement of the optical response parallel to the optical axis. The dependence of the equilibrium point with temperature and with the topological magnetoelectric polarizability characteristic of three-dimensional topological insulators is also discussed.Comment: 17 pages, 7 figures. Published versio

    Strongly Correlated Cerium Systems: Non-Kondo Mechanism for Moment Collapse

    Full text link
    We present an ab initio based method which gives clear insight into the interplay between the hybridization, the coulomb exchange, and the crystal-field interactions, as the degree of 4f localization is varied across a series of strongly correlated cerium systems. The results for the ordered magnetic moments, magnetic structure, and ordering temperatures are in excellent agreement with experiment, including the occurence of a moment collapse of non-Kondo origin. In contrast, standard ab initio density functional calculations fail to predict, even qualitatively, the trend of the unusual magentic properties.Comment: A shorter version of this has been submitted to PR

    Near-Zero Moment Ferromagnetism in the Semiconductor SmN

    Full text link
    The magnetic behaviour of SmN has been investigated in stoichiometric polycrystalline films. All samples show ferromagnetic order with Curie temperature (T_c) of 27 +/- 3 K, evidenced by the occurrence of hysteresis below T_c. The ferromagnetic state is characterised by a very small moment and a large coercive field, exceeding even the maximum applied field of 6 T below about 15 K. The residual magnetisation at 2 K, measured after cooling in the maximum field, is 0.035 mu_B per Sm. Such a remarkably small moment results from a near cancellation of the spin and orbital contributions for Sm3+ in SmN. Coupling to an applied field is therefore weak, explaining the huge coercive field . The susceptibility in the paramagnetic phase shows temperature-independent Van Vleck and Curie-Weiss contributions. The Van Vleck contribution is in quantitative agreement with the field-induced admixture of the J=7/2 excited state and the 5/2 ground state. The Curie-Weiss contribution returns a Curie temperature that agrees with the onset of ferromagnetic hysteresis, and a conventional paramagnetic moment with an effective moment of 0.4 mu_B per Sm ion, in agreement with expectations for the crystal-field modified effective moment on the Sm3+ ions.Comment: 5 pages, 3 figure

    Low-temperature properties of the heavy-fermion system U Cd

    Full text link
    We present electrical-resistivity, magnetic-susceptibility, specific-heat, and thermal-expansion data for UCd11. The low-temperature specific heat indicates that the electronic subsystem has a highly enhanced specific heat which is partially removed by a phase transition at 5.0 K. © 1984 The American Physical Society

    Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates

    Full text link
    The two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential applications in optoelectronics and energy harvesting. However, the synthetic approach to obtain high quality and large-area MoS2 atomic thin layers is still rare. Here we report that the high temperature annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur can produce large-area MoS2 thin layers with superior electrical performance on insulating substrates. Spectroscopic and microscopic results reveal that the synthesized MoS2 sheets are highly crystalline. The electron mobility of the bottom-gate transistor devices made of the synthesized MoS2 layer is comparable with those of the micromechanically exfoliated thin sheets from MoS2 crystals. This synthetic approach is simple, scalable and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.Comment: manuscript submitted on 11-Dec-2011, revision submitted on 16-Feb-201

    Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond

    Get PDF
    2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
    • 

    corecore