5,371 research outputs found

    Electron Holes and Heating in the Reconnection Dissipation Region

    Full text link
    Using particle-in-cell simulations and kinetic theory, we explore the current-driven turbulence and associated electron heating in the dissipation region during 3D magnetic reconnection with a guide field. At late time the turbulence is dominated by the Buneman and lower hybrid instabilities. Both produce electron holes that co-exist but have very different propagation speeds. The associated scattering of electrons by the holes enhances electron heating in the dissipation region.Comment: 14 pages, 5 figures, submitted to GR

    Nonlinear Development of Streaming Instabilities In Strongly Magnetized Plasmas

    Full text link
    The nonlinear development of streaming instabilities in the current layers formed during magnetic reconnection with a guide field is explored. Theory and 3-D particle-in-cell simulations reveal two distinct phases. First, the parallel Buneman instability grows and traps low velocity electrons. The remaining electrons then drive two forms of turbulence: the parallel electron-electron two-stream instability and the nearly-perpendicular lower hybrid instability. The high velocity electrons resonate with the turbulence and transfer momentum to the ions and low velocity electrons.Comment: Accepted by PR

    Functional dynamics of the folded ankyrin repeats of I kappa B alpha revealed by nuclear magnetic resonance.

    Get PDF
    Inhibition of nuclear factor kappaB (NF-kappaB) is mainly accomplished by IkappaB alpha, which consists of a signal response sequence at the N-terminus, a six-ankyrin repeat domain (ARD) that binds NF-kappaB, and a C-terminal PEST sequence. Previous studies with the ARD revealed that the fifth and sixth repeats are only partially folded in the absence of NF-kappaB. Here we report NMR studies of a truncated version of IkappaB alpha, containing only the first four ankyrin repeats, IkappaB alpha(67-206). This four-repeat segment is well-structured in the free state, enabling full resonance assignments to be made. H-D exchange, backbone dynamics, and residual dipolar coupling (RDC) experiments reveal regions of flexibility. In addition, regions consistent with the presence of micro- to millisecond motions occur periodically throughout the repeat structure. Comparison of the RDCs with the crystal structure gave only moderate agreement, but an ensemble of structures generated by accelerated molecular dynamics gave much better agreement with the measured RDCs. The regions showing flexibility correspond to those implicated in entropic compensation for the loss of flexibility in ankyrin repeats 5 and 6 upon binding to NF-kappaB. The regions showing micro- to millisecond motions in the free protein are the ends of the beta-hairpins that directly interact with NF-kappaB in the complex

    Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2

    Full text link
    We performed an extensive investigation on the correlations among superconductivity, structural instability and band filling in Nb1-xB2 materials. Structural measurements reveal that a notable phase transformation occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with the minimum total density of states (DOS) as demonstrated by the first-principles calculations. Superconductivity in Nb1-xB2 generally becomes visible in the Nb-deficient materials with x=0.2. Electron energy-loss spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence of a chemical shift arising from the structural transformation. Our systematical experimental results in combination with theoretical analysis suggest that the emergence of hole states in the sigma-bands plays an important role for understanding the superconductivity and structural transition in Nb1-xB2.Comment: 16 pages, 4 figure

    Thermal Charm Production in Quark-Gluon Plasma at LHC

    Full text link
    Charm production from the quark-gluon plasma created in the midrapidity of central heavy ion collisions at the Large Hadron Collider (LHC) is studied in the next-to-leading order in QCD. Using a schematic longitudinally boost-invariant and transversally expanding fire-cylinder model, we find that charm production could be appreciably enhanced at LHC as a result of the high temperature that is expected to be reached in the produced quark-gluon plasma. Sensitivities of our results to the number of charm quark pairs produced from initial hard scattering, the initial thermalization time and temperature of the quark-gluon plasma, and the charm quark mass are also studied.Comment: 8 pages, 9 figures; adding a figure and relevant discussion on the sensitivity of our results to the number of charm quark pairs produced from initial hard scattering. Version accepted for publication in PR

    Evidence for s-wave pairing from measurement on lower critical field in MgCNi3MgCNi_3

    Full text link
    Magnetization measurements in the low field region have been carefully performed on a well-shaped cylindrical and an ellipsoidal sample of superconductor MgCNi3MgCNi_3. Data from both samples show almost the same results. The lower critical field Hc1H_{c1} and the London penetration depth λ\lambda are thus derived. It is found that the result of normalized superfluid density λ2(0)/λ2(T)\lambda^2(0)/\lambda^2(T) of MgCNi3MgCNi_3 can be well described by BCS prediction with the expectation for an isotropic s-wave superconductivity.Comment: To appear in Phys. Rev.
    • …
    corecore