6,920 research outputs found

    Synchrotron and Inverse Compton Constraints on Lorentz Violations for Electrons

    Get PDF
    We present a method for constraining Lorentz violation in the electron sector, based on observations of the photons emitted by high-energy astrophysical sources. The most important Lorentz-violating operators at the relevant energies are parameterized by a tensor c^{nu mu) with nine independent components. If c is nonvanishing, then there may be either a maximum electron velocity less than the speed of light or a maximum energy for subluminal electrons; both these quantities will generally depend on the direction of an electron's motion. From synchrotron radiation, we may infer a lower bound on the maximum velocity, and from inverse Compton emission, a lower bound on the maximum subluminal energy. With observational data for both these types of emission from multiple celestial sources, we may then place bounds on all nine of the coefficients that make up c. The most stringent bound, on a certain combination of the coefficients, is at the 6 x 10^(-20) level, and bounds on the coefficients individually range from the 7 x 10^(-15) level to the 2 x 10^(-17) level. For most of the coefficients, these are the most precise bounds available, and with newly available data, we can already improve over previous bounds obtained by the same methods.Comment: 28 page

    The search for novel analgesics: re-examining spinal cord circuits with new tools

    Get PDF
    In this perspective, we propose the absence of detailed information regarding spinal cord circuits that process sensory information remains a major barrier to advancing analgesia. We highlight recent advances showing that functionally discrete populations of neurons in the spinal cord dorsal horn play distinct roles in processing sensory information. We then discuss new molecular, electrophysiological, and optogenetic techniques that can be employed to understand how dorsal horn circuits process tactile and nociceptive information. We believe this information can drive the development of entirely new classes of pharmacotherapies that target key elements in spinal circuits to selectively modify sensory function and blunt pain

    Constraints on the Orbital Evolution of Triton

    Full text link
    We present simulations of Triton's post-capture orbit that confirm the importance of Kozai-type oscillations in its orbital elements. In the context of the tidal orbital evolution model, these variations require average pericenter distances much higher than previously published, and the timescale for the tidal orbital evolution of Triton becomes longer than the age of the Solar System. Recently-discovered irregular satellites present a new constraint on Triton's orbital history. Our numerical integrations of test particles indicate a timescale for Triton's orbital evolution to be less than 10510^5 yrs for a reasonable number of distant satellites to survive Triton's passage. This timescale is inconsistent with the exclusively tidal evolution (time scale of >108>10^8 yrs), but consistent with the interestion with the debris from satellite-satellite collisions. Any major regular satellites will quickly collide among themselves after being perturbed by Triton, and the resulting debris disk would eventually be swept up by Triton; given that the total mass of the Uranian satellite system is 40% of that of Triton, large scale evolution is possible. This scenario could have followed either collisional or the recently-discussed three-body-interaction-based capture.Comment: 10 pages, 4 figures, accepted for ApJ

    Microborings in mid Cretaceous fish teeth

    Get PDF
    Fish teeth and other remains from the British Cretaceous contain abundant evidence for post-mortem colonization by endolithic organisms. The borings are here recognised as occurring in three morphotypes, including a flask-shaped form not previously recorded. There is strong evidence to suggest that each of these boring types shows a strong preference for a particular substrate histology. The damage and destruction of vertebrate remains by microborings is here considered to exert a major taphonomic control on microvertebrate assemblages. The relationships between the intensity of colonization of vertebrate material by endolithic organisms and palaeoenvironment have implications for using these bone microborings as palaeoenvironmental indicators

    Organizational Capacity and Progress Plateaus in the Flight Training Environment

    Get PDF
    Capacity is the ability of an organization to achieve its overall mission and satisfy stakeholder expectations. Stakeholders in a flight training organization include the owners and/or their representatives, flight school managers, instructor pilots, and the student pilots. This study was an examination of the organizational capacity of student pilots through a progress plateau theoretical lens using a mixed methodological approach and participants from a collegiate aviation program. Student pilot progress plateaus were found to have an adverse unrealized capacity consequence for the stakeholders in the organization. Recommendations to improve organizational capacity include the identification of progress plateaus utilizing flight training progress charts followed by the intervention of flight school leaders to resolve the plateau

    A search for transits of GJ 581\lowercase{e} and characterization of the host star variability using MOST space telescope photometry

    Get PDF
    The GJ 581 system has been amply studied since its discovery in 2005: the number of known planets in the system has increased and their orbital parameters are among the most precisely determined for radial velocity detected exoplanets. We have acquired MOST space-based photometry during 2007 and 2009, with the aims of measuring the stellar variability and searching for transits of GJ 581e, respectively. We quantify our sensitivity to shallow transit signals using Monte Carlo simulations, and perform a transit search within the 3σ\sigma transit windows corresponding to both the circular and Keplerian orbit ephemerides. Our analysis rules out transits for a planet with an orbital period of 3.15 days (GJ 581 e) having a radius larger than 1.62 RR_{\oplus} (or a density lower than 2.39 g cm3^{-3} for an orbital inclination of 90^{\circ}) to 2σ\sigma confidence. Thus, if the planet transits, we can exclude hydrogen, helium and water theoretical model compositions. The MOST photometry also allows us to rule out transits of GJ 581b within the Keplerian orbit-derived transit window for impact parameter values smaller than \sim0.4 and confirm previous results which exclude transits for this planet within the circular orbit-derived transit window, for all plausible interior compositions. We find that the stellar brightness of GJ 581 is stable to within 1%, a characteristic which is favourable to the development of life in the habitable zone of the system. In the 2009 photometry, we detect a stellar signal with a period of 5.586 ±\pm 0.051 days, which is close to the orbital period of GJ 581b (P=P=5.37 days). However, further monitoring of the system is necessary to verify the nature of this variation.Comment: 11 pages, 2 tables, 10 figures; accepted for publication in Ap

    Analysis of the Two-Level NO PLIF Model for Low-Temperature High-Speed Flow Applications

    Get PDF
    The current work compares experimentally obtained nitric oxide (NO) laser-induced fluorescence (LIF) spectra with the equivalent spectra obtained analytically. The experimental spectra are computed from captured images of fluorescence in a gas cell and from a laser sheet passing through the fuel-air mixing flowfield produced by a high-speed fuel injector. The fuel injector is a slender strut that is currently being studied as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. This injector is placed downstream of a Mach 6 facility nozzle, which simulates the high Mach number airflow at the entrance of a scramjet combustor, and injects helium, which is used as an inert substitute for hydrogen fuel. Experimental planar (P) LIF is obtained by using a UV laser to excite fluorescence from the NO molecules that are present in either a gas cell or the facility air used for the EIMP experiments. The experimental data are obtained for several segments of the NO fluorescence spectrum. The selected segments encompass LIF lines with rotational quantum numbers appropriate for low-to-moderate temperature flows similar to those corresponding to the nominal experimental flow conditions. The experimental LIF spectra are then evaluated from the data and compared with those obtained from the theoretical models. The theoretical spectra are obtained from LIFBASE and LINUS software, and from a simplified version of the two-level fluorescence model. The equivalent analytic PLIF images are also obtained by applying only the simplified model to the results of the Reynolds-averaged simulations (RAS) of the mixing flowfield. Good agreement between the experimental and theoretical results provides increased confidence in both the simplified LIF modeling and CFD simulations for further investigations of high-speed injector performance using this approach

    Initial Conditions for Bubble Universes

    Full text link
    The "bubble universes" of Coleman and De Luccia play a crucial role in string cosmology. Since our own Universe is supposed to be of this kind, bubble cosmology should supply definite answers to the long-standing questions regarding cosmological initial conditions. In particular, it must explain how an initial singularity is avoided, and also how the initial conditions for Inflation were established. We argue that the simplest non-anthropic approach to these problems involves a requirement that the spatial sections defined by distinguished bubble observers should not be allowed to have arbitrarily small volumes. Casimir energy is a popular candidate for a quantum effect which can ensure this, but [because it violates energy conditions] there is a danger that it could lead to non-perturbative instabilities in string theory. We make a simple proposal for the initial conditions of a bubble universe, and show that our proposal ensures that the system is non-perturbatively stable. Thus, low-entropy conditions can be established at the beginning of a bubble universe without violating the Second Law of thermodynamics and without leading to instability in string theory. These conditions are inherited from the ambient spacetime.Comment: Further clarifications; 28 pages including three eps files. This is the final [accepted for publication] versio

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal

    Tempestites in a Teapot? Condensation-Generated Shell Beds in the Upper Ordovician, Cincinnati Arch, USA.

    Get PDF
    Skeletal concentrations in mudstones may represent local facies produced by storm winnowing in shallow water, or time-specific deposits related to intervals of diminished sediment supply. Upper Ordovician (Katian) of the Cincinnati region is a mixed siliciclastic-carbonate succession including meter-scale cycles containing a shelly limestone-dominated phase and a mudstone-dominated phase. The “tempestite proximality model” asserts that shell-rich intervals originated by winnowing of mud from undifferentiated fair-weather deposits. Thus shell beds are construed as tempestites, while interbedded mudstones represent either fair-weather or bypassed mud. Meter-scale cycles are attributed to sea-level fluctuation or varying storm intensity. Alternatively, the “episodic starvation model” argues, on the basis of petrographic, taphonomic, and stratigraphic evidence, that, despite widespread evidence for storms or other turbulence events (e.g. tsunamis), winnowing alone could not generate shell beds where none had previously existed. Instead, variations in sediment supply are construed as the principal cause of shelly-mudstone cycles. Shell-rich deposits accrue during periods of siliciclastic sediment starvation and relatively shell-free mud accumulates during periods of sediment influx. Tempestite proximality and episodic starvation models lead to contrasting predictions about proximal-to-distal facies patterns. These are: (i) large versus small volumes of distally-deposited, bypassed mud; (ii) proximal grainstones and distal packstones versus distal grainstones and proximal packstones; and (iii) proximal versus distal amalgamation and condensation of shell beds. In this paper, these predictions are tested by (i) comparing meter-scale cycles from different horizons and depositional environments through the lower Cincinnatian succession (Kope through McMillan Formations representing deep subtidal through intertidal environments), and (ii) correlating intervals and individual meter-scale cycles from the Fairview Formation of the Cincinnati Arch (shallow subtidal) north and west into the Maquoketa Shale (deep subtidal) in subsurface of Ohio and Indiana. Both approaches show patterns consistent with episodic starvation, not winnowing, including: (i) small differences in stratigraphic thickness indicate small volumes of bypassed mud; (ii) discrete distal deep-water grainstones that splay proximally into bundles of thinner shallow-water packstones alternating with shelly muds show that grainstones formed from a lack of, rather than removal of mud; and (iii) distal shell bed amalgamation and condensation (and corresponding proximal splaying) of shell beds shows a proximal source of mud. Thus, winnowing by storms or other turbulence events did not generate shell beds or cycles from undifferentiated sediments despite abundant evidence for storm deposition. High-resolution correlations imply that the shell-bed and mud-bed hemicycles reflect simultaneous basin-wide changes in sedimentary style rather than contemporaneous facies belts that track sea-level. In this sense, shell-rich and mud-rich hemicycles are “non-Waltherian” facies
    corecore