1,242,836 research outputs found

    Anisotropic conductivity of doped graphene due to short-range non-symmetric scattering

    Full text link
    The conductivity of doped graphene is considered taking into account scattering by short-range nonsymmetric defects, when the longitudinal and transverse components of conductivity tensor appear to be different. The calculations of the anisotropic conductivity tensor are based on the quasiclassical kinetic equation for the case of monopolar transport at low temperatures. The effective longitudinal conductivity and the transverse voltage, which are controlled by orientation of sample and by gate voltage (i.e. doping level), are presented.Comment: 3 pages, 2 figure

    Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly

    Full text link
    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.Comment: 9 pages, 7 figures and 4 table

    The structure of the graviton self-energy at finite temperature

    Full text link
    We study the graviton self-energy function in a general gauge, using a hard thermal loop expansion which includes terms proportional to T^4, T^2 and log(T). We verify explicitly the gauge independence of the leading T^4 term and obtain a compact expression for the sub-leading T^2 contribution. It is shown that the logarithmic term has the same structure as the ultraviolet pole part of the T=0 self-energy function. We argue that the gauge-dependent part of the T^2 contribution is effectively canceled in the dispersion relations of the graviton plasma, and present the solutions of these equations.Comment: 27 pages, 6 figure
    • …
    corecore