473,254 research outputs found

    Lie systems: theory, generalisations, and applications

    Full text link
    Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping: the so-called superposition rule. Apart from this fundamental property, Lie systems enjoy many other geometrical features and they appear in multiple branches of Mathematics and Physics, which strongly motivates their study. These facts, together with the authors' recent findings in the theory of Lie systems, led to the redaction of this essay, which aims to describe such new achievements within a self-contained guide to the whole theory of Lie systems, their generalisations, and applications.Comment: 161 pages, 2 figure

    Momentum transfer to small particles by aloof electron beams

    Get PDF
    The force exerted on nanoparticles and atomic clusters by fast passing electrons like those employed in transmission electron microscopes are calculated and integrated over time to yield the momentum transferred from the electrons to the particles. Numerical results are offered for metallic and dielectric particles of different sizes (0-500 nm in diameter) as well as for carbon nanoclusters. Results for both linear and angular momentum transfers are presented. For the electron beam currents commonly employed in electron microscopes, the time-averaged forces are shown to be comparable in magnitude to laser-induced forces in optical tweezers. This opens up the possibility to study optically-trapped particles inside transmission electron microscopes.Comment: 6 pages, 5 figure
    corecore