432 research outputs found

    Phonon-assisted decoherence and tunneling in quantum dot molecules

    Full text link
    We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between the quantum dots is studied in detail.Comment: 4 pages, 2 figures, conference proceeding NOEKS10, to be published in Phys. Stat. So

    Theory of phonon-mediated relaxation in doped quantum dot molecules

    Full text link
    A quantum dot molecule doped with a single electron in the presence of diagonal and off-diagonal carrier-phonon couplings is studied by means of a non-perturbative quantum kinetic theory. The interaction with acoustic phonons by deformation potential and piezoelectric coupling is taken into account. We show that the phonon-mediated relaxation is fast on a picosecond timescale and is dominated by the usually neglected off-diagonal coupling to the lattice degrees of freedom leading to phonon-assisted electron tunneling. We show that in the parameter regime of current electrical and optical experiments, the microscopic non-Markovian theory has to be employed.Comment: Final extended version, 5 pages, 4 figure

    Phonon-assisted tunneling between singlet states in two-electron quantum dot molecules

    Full text link
    We study phonon-assisted electron tunneling in semiconductor quantum dot molecules. In particular, singlet-singlet relaxation in a two-electron doped structure is considered. The influence of Coulomb interaction is discussed via comparison with a single electron system. We find that the relaxation rate reaches similar values in the two cases but the Coulomb interaction shifts the maximum rates towards larger separations between the dots. The difference in electron-phonon interaction between deformation potential and piezoelectric coupling is investigated. We show that the phonon-induced tunneling between two-electron singlet states is a fast process, taking place on the time scales of the order of a few tens of picoseconds.Comment: Final extended version, 8 pages, 9 figure

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

    Full text link
    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times \wrt previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.Comment: ECCV 201

    Subobject Detection through Spatial Relationships on Mobile Phones

    Get PDF
    We present a novel image classification technique for detecting multiple objects (called subobjects) in a single image. In addition to image classifiers, we apply spatial relationships among the subobjects to verify and to predict locations of detected and undetected subobjects, respectively. By continuously refining the spatial relationships throughout the detection process, even locations of completely occluded exhibits can be determined. Finally, all detected subobjects are labeled and the user can select the object of interest for retrieving corresponding multimedia information. This approach is applied in the context of PhoneGuide, an adaptive museum guidance system for camera-equipped mobile phones. We show that the recognition of subobjects using spatial relationships is up to 68% faster than related approaches without spatial relationships. Results of a field experiment in a local museum illustrate that unexperienced users reach an average recognition rate for subobjects of 85.6% under realistic conditions

    Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons

    Get PDF
    Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround

    Increasing the Field-of-View Radiation Efficiency of Optical Phased Antenna Arrays

    Full text link
    Silicon photonics in conjunction with complementary metal-oxide-semiconductor (CMOS) fabrication has greatly enhanced the development of integrated optical phased arrays. This facilitates a dynamic control of light in a compact form factor that enables the synthesis of arbitrary complex wavefronts in the infrared spectrum. We numerically demonstrate a large-scale two dimensional silicon-based optical phased array (OPA) composed of nanoantennas with circular gratings that are balanced in power and aligned in phase, required for producing elegant radiation patterns in the far field. For a wavelength of 1.55μm\mu m, we optmize two antennas for the OPA exhibting an upward radiation efficiency as high as 90%, with almost 6.8% of optical power concentrated in the field of view. Additionally, we believe that the proposed OPAs can be easily fabricated and would have the ability of generating complex holographic images, rendering them an attractive candidate for a wide range of applications like LiDAR sensors, optical trapping, optogenetic stimulation and augmented-reality displays

    Electron g-Factor Anisotropy in Symmetric (110)-oriented GaAs Quantum Wells

    Get PDF
    We demonstrate by spin quantum beat spectroscopy that in undoped symmetric (110)-oriented GaAs/AlGaAs single quantum wells even a symmetric spatial envelope wavefunction gives rise to an asymmetric in-plane electron Land\'e-g-factor. The anisotropy is neither a direct consequence of the asymmetric in-plane Dresselhaus splitting nor of the asymmetric Zeeman splitting of the hole bands but is a pure higher order effect that exists as well for diamond type lattices. The measurements for various well widths are very well described within 14 x 14 band k.p theory and illustrate that the electron spin is an excellent meter variable to map out the internal -otherwise hidden- symmetries in two dimensional systems. Fourth order perturbation theory yields an analytical expression for the strength of the g-factor anisotropy, providing a qualitative understanding of the observed effects

    ORCID for Wikidata. Data enrichment for scientometric applications

    Get PDF
    Due to its numerous bibliometric entries of scholarly articles and connected information Wikidata can serve as an open and rich source for deep scientometrical analyses. However, there are currently certain limitations: While 31.5% of all Wikidata entries represent scientific articles, only 8.9% are entries describing a person and the number of entries researcher is accordingly even lower. Another issue is the frequent absence of established relations between the scholarly article item and the author item although the author is already listed in Wikidata. To fill this gap and to improve the content of Wikidata in general, we established a workflow for matching authors and scholarly publications by integrating data from the ORCID (Open Researcher and Contributor ID) database. By this approach we were able to extend Wikidata by more than 12k author-publication relations and the method can be transferred to other enrichments based on ORCID data. This is extension is beneficial for Wikidata users performing bibliometrical analyses or using such metadata for other purposes
    corecore