7 research outputs found

    Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures

    Get PDF
    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth

    In Vivo Assessment of Bone Ingrowth Potential of Three-Dimensional E-Beam Produced Implant Surfaces and the Effect of Additional Treatment by Acid Etching and Hydroxyapatite Coating

    Get PDF
    The bone ingrowth potential of three-dimensional E-beam-produced implant surfaces was examined by histology and compared to a porous plasma-sprayed control. The effects of acid etching and a hydroxyapatite (HA) coating were also evaluated by histology. Specimens were implanted in the distal femur of 10 goats. Histological analysis of bone ingrowth was performed 6 weeks after implantation. The E-beam-produced surfaces showed significantly better bone ingrowth compared to the plasma-sprayed control. Additional treatment of the E-beam surface structures with a HA coating, further improved bone ingrowth potential of these structures significantly. Acid etching of the E-beam structures did not influence bone ingrowth significantly. In conclusion, the HA-coated, E-beam-produced structures are promising potential implant surface

    Frictional and bone ingrowth properties of engineered surface topographies produced by electron beam technology

    Get PDF
    Contains fulltext : 96937.pdf (publisher's version ) (Closed access)BACKGROUND: Electron beam melting (E-beam) is a new technology to produce 3-dimensional surface topographies for cementless orthopedic implants. METHODS: The friction coefficients of two newly developed E-beam produced surface topographies were in vitro compared with sandblasted E-beam and titanium plasma sprayed controls. Bone ingrowth (direct bone-implant contact) was determined by implanting the samples in the femoral condyles of 6 goats for a period of 6 weeks. RESULTS: Friction coefficients of the new structures were comparable to the titanium plasma sprayed control. The direct bone-implant contact was 23.9 and 24.5% for the new surface structures. Bone-implant contact of the sandblasted and titanium plasma sprayed control was 18.2 and 25.5%, respectively. CONCLUSIONS: The frictional and bone ingrowth properties of the E-beam produced surface structures are similar to the plasma-sprayed control. However, since the maximal bone ingrowth had not been reached for the E-beam structures during the relatively short-term period, longer-term follow-up studies are needed to assess whether the E-beam structures lead to a better long-term performance than surfaces currently in use, such as titanium plasma spray coating

    Gender topics on potato research and development.

    No full text
    Sustainable Development Goals 5 calls for addressing gender equality and women empowerment by, among other things, eliminating all forms of discrimination against women. At CIP we interpret this to mean strengthening the use of gender approaches in research and ensuring that research products are responsive to the needs of men and women. This chapter reviews lessons learnt over the years on integrating gender into potato research and development. The chapter discusses how gender has been approached in five key themes in potato research, namely (1) conserving and accessing genetic resources, (2) genetics and crop improvement, (3) managing priority pests and disease, (4) access to seed (seed flows and networks), and (5) marketing, postharvest processing and utilization. This chapter discusses how gender relations that favor men influence women’s participation in and their ability to benefit from potato production, marketing, and research for development. The review shows that potato research has been increasingly focusing on social determinants of potato farming because of the realization that purely technical solutions will not solve inefficiencies in potato production. Using a gender relations approach, the chapter attempts to draw out lessons that can contribute to the design of future potato interventions including research aimed at reducing the gender gap in agriculture in general and potato farming in particular
    corecore