2,046 research outputs found

    A Semicoarsening Multigrid Algorithm for SIMD Machines

    Get PDF
    A semicoarsening multigrid algorithm suitable for use on single instruction multiple data (SIMD) architectures has been implemented on the CM-2. The method performs well for strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude across internal interfaces. The parallel efficiency of this method is analyzed, and its actual performance is compared with its performance on some other machines, both parallel and nonparallel

    Surface parameters of stannic oxide in powder, ceramic, and gel form by nitrogen adsorption techniques Interim report

    Get PDF
    Surface parameters of stannic oxide in powder, ceramic, and gel form by nitrogen adsorption techniques - analysis of adsorption isotherm

    Galactic Globular Cluster Metallicity Scale from the Calcium Triplet. II. Rankings, Comparisons and Puzzles

    Get PDF
    We compare our compilation of the W' calcium index for 71 Galactic globular clusters to the widely used Zinn and West (1984 ApJS, 55, 45) [Fe/H] scale and to Carretta and Gratton's (1997 A&A Supplement 121, 95) scale from high-dispersion spectra analyzed with Kurucz (1992, private communication) model atmospheres. We find our calcium ranking to be tightly correlated with each comparison set, in a non-linear and a linear fashion, respectively. By combining our calcium index information with the Zinn and West ranking, we are able to rank the globular clusters in our sample with a typical precision of +/- 0.05 dex for [Fe/H] < -0.5 on the Zinn and West scale; for clusters more metal rich than this, the ranking is less precise. The significant differences between these metallicity scales raise important questions about our understanding of Galactic formation and chemical enrichment processes. Furthermore, in spite of the apparent improvement in metallicity ranking for the Galactic globular clusters that results from our addition of information from the Ca II triplet lines to the potpourri of other metallicity indicators, caution -- perhaps considerable -- may be advisable when using W' as a surrogate for metallicity, especially for systems where ranges in age and metallicity are likely.Comment: To appear in the August 1997 issue of PASP Also available at http://www.hia.nrc.ca/eprints.htm

    Distribution of Spectral Characteristics and the Cosmological Evolution of GRBs

    Full text link
    We investigate the cosmological evolution of GRBs, using the total gamma ray fluence as a measure of the burst strength. This involves an understanding of the distributions of the spectral parameters of GRBs as well as the total fluence distribution - both of which are subject to detector selection effects. We present new non-parametric statistical techniques to account for these effects, and use these methods to estimate the true distribution of the peak of the nu F_nu spectrum, E_p, from the raw distribution. The distributions are obtained from four channel data and therefore are rough estimates. Here, we emphasize the methods and present qualitative results. Given its spectral parameters, we then calculate the total fluence for each burst, and compute its cumulative and differential distributions. We use these distributions to estimate the cosmological rate evolution of GRBs, for three cosmological models. Our two main conclusions are the following: 1) Given our estimates of the spectral parameters, we find that there may exist a significant population of high E_p bursts that are not detected by BATSE, 2) We find a GRB co-moving rate density quite different from that of other extragalactic objects; in particular, it is different from the recently determined star formation rate.Comment: 20 pages, including 10 postscript figures. Submitted to Ap

    Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    Get PDF
    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests

    Quiescent X-ray variability from the neutron star transient Aql X-1

    Get PDF
    A number of studies have revealed variability from neutron star low-mass X-ray binaries during quiescence. Such variability is not well characterised, or understood, but may be a common property that has been missed due to lack of multiple observations. One such source where variability has been observed is Aql X-1. Here, we analyse 14 Chandra and XMM-Newton observations of Aql X-1 in quiescence, covering a period of approximately 2 years. There is clear variability between the epochs, with the most striking feature being a flare-like increase in the flux by a factor of 5. Spectral fitting is inconclusive as to whether the power-law and/or thermal component is variable. We suggest that the variability and flare-like behaviour during quiescence is due to accretion at low rates which might reach the neutron star surface.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Freeze-Thaw Cycling as a Chemical Weathering Agent on a Cold and Icy Mars

    Get PDF
    Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined. In addition, ice and glaciation have been major geologic agents throughout the later Hesperian and Amazonian eras. One process that can act in such climates is repeated freezing and thawing of water on the surface and in the subsurface, and is significant because it can occur anywhere with an active layer and could have persisted for a time after liquid water was no longer stable on Mars surface. As freeze-thaw is the dominant mechanical weathering process in most glacial/periglacial terrains, it was likely a significant geomorphologic driver at local to regional scales during past climates, and would potentially have been most active when day-average surface temperatures exceeded 0 C for part of the year. Indeed, freeze-thaw involving liquid water in the Amazonian is evidenced by abundant geomorphic features including polygonal ground and solifluction lobes requiring seasonal thawing. In addition to physical modification, freezing can drive solutions towards supersaturation and force dissolved solutes out as precipitates. In Mars-like terrains, dissolved solutes are typically dominated by silica. In polar regions on Earth, freeze-thaw cycles have been shown to promote deposition of silica, and freeze-thaw experiments on synthetic solutions found stable amorphous silica that built up over multiple cycles. Freeze-thaw may therefore be an important but overlooked chemical weathering process on Mars. However, our ability to assess its impact on alteration of martian terrains is majorly limited by the current lack of understanding of the alteration phases produced (and formation rates) under controlled freeze-thaw weathering of Mars-relevant materials. To address this knowledge gap, we report results from (1) freeze-thaw weathering products found at a glacial Mars analog site at the Three Sisters, Oregon, and (2) new controlled freeze-thaw experiments on basaltic material

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures

    Far-infrared imaging of tokamak plasma

    Get PDF
    A 20-channel interferometer has been developed which utilizes a linear, one-dimensional microbolometer array to obtain single-shot density profiles from the UCLA Microtor tokamak plasma. The interferometer has been used to study time-dependent phenomena in the plasma density profile. Observations of the sawtooth instability clearly show the growth of the m=0 mode from a localized oscillation (r=1 cm) on axis to an oscillation of the entire plasma. Also, measurements during the initial startup phase of the discharge show evidence of hollow density profiles. In addition, a simultaneous measurement of the poloidal magnetic field has been developed which provides 20 channels of polarimetry. Interferometry and polarimetry both use the same imaging system and the spatial resolution of both measurements has been tested using plastic and crystal-quartz test objects. The signal-to-noise ratio for the polarimeter has also proved adequate for the expected Faraday rotation angle (alphamax=7°, Ip=70 kA, n=5×10^13 cm^−3)

    Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    Get PDF
    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years
    corecore