22,259 research outputs found

    Nickel-cadmium cells

    Get PDF
    A high energy density nickel cadmium cell of aerospace quality was designed. The approach used was to utilize manufacturing techniques which produce highly uniform and controlled starting materials in addition to improvements in the overall design. Parameters controlling the production of plaque and both positive and negative plate were studied. Quantities of these materials were produced and prototype cells were assembled to test the proposed design

    Heat sterilizable Ni-Cd battery development Quarterly progress report, 1 Oct. - 31 Dec. 1967

    Get PDF
    Microscopic, X ray diffraction, porosity, and pore size distribution data for heat sterilizable Ni-Cd batter

    Origin of mesosiderites as a natural consequence of planet formation

    Get PDF
    The mineral composition of mesosiderites is described and a theory of the origin and evolution of these meteorites is presented. It is suggested that the asteroid parent body of the mesosiderites also formed in the inner solar system, perhaps just within the orbit of Mars. As a result of close planetary encounters, some bodies that formed near Earth or Venus were gravitationally perturbed into non-circular orbits; a few such bodies passed through the mesosiderite region at high relative velocities, colliding with and destroying a few of the native asteroids. Olivine-rich silicate mantles shattered into small pieces, but the stronger metal cores remained as large fragments. Much of the debris remained in circular orbits and accreted to the basaltic regoliths of intact native asteroids at low relative velocities. The large core fragments that collided with the crust greatly enriched restricted regions of the surface in metal. These localized regions were the mesosiderite progenitors; they accounted for only about 1% of the surface area of the parent bodies

    Heat sterilizable Ni-Cd battery development Quarterly report, 1 Jul. - 30 Sep. 1967

    Get PDF
    Effect of heat sterilization on electrochemistry of nickel-cadmium batterie

    Polar orbit electrostatic charging of objects in shuttle wake

    Get PDF
    A survey of DMSP data has uncovered several cases where precipitating auroral electron fluxes are both sufficiently intense and energetic to charge spacecraft materials such as teflon to very large potentials in the absence of ambient ion currents. Analytical bounds are provided which show that these measured environments can cause surface potentials in excess of several hundred volts to develop on objects in the orbiter wake for particular vehicle orientations

    Heat sterilizable and impact resistant Ni-Cd battery development Quarterly report, 1 Apr. - 30 Jun. 1969

    Get PDF
    Electrochemistry, battery engineering, and impact tests of heat sterilizable nickel cadmium cell

    Clinical trials with endothelin receptor antagonists: What went wrong and where can we improve?

    Get PDF
    In the early 1990s, within three years of cloning of endothelin receptors, orally active endothelin receptor antagonists (ERAs) were tested in humans and the first clinical trial of ERA therapy in humans was published in 1995. ERAs were subsequently tested in clinical trials involving heart failure, pulmonary arterial hypertension, resistant arterial hypertension, stroke/subarachnoid hemorrhage and various forms of cancer. The results of most of these trials – except those for pulmonary arterial hypertension and scleroderma-related digital ulcers – were either negative or neutral. Problems with study design, patient selection, drug toxicity, and drug dosing have been used to explain or excuse failures. Currently, a number of pharmaceutical companies who had developed ERAs as drug candidates have discontinued clinical trials or further drug development. Given the problems with using ERAs in clinical medicine, at the Twelfth International Conference on Endothelin in Cambridge, UK, a panel discussion was held by clinicians actively involved in clinical development of ERA therapy in renal disease, systemic and pulmonary arterial hypertension, heart failure, and cancer. This article provides summaries from the panel discussion as well as personal perspectives of the panelists on how to proceed with further clinical testing of ERAs and guidance for researchers and decision makers in clinical drug development on where future research efforts might best be focused

    The ionization structure of the Orion nebula: Infrared line observations and models

    Get PDF
    Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement

    What lies beyond social capital? the role of social psychology in building community resilience to climate change

    Get PDF
    Climate change is increasing the prevalence and impact of extreme events, which may have severe psychosocial after-effects for the people and communities who are affected. To mitigate their impact, governments advocate developing community resilience. Most approaches to community resilience employ the concept of social capital, suggesting that communities with more dense pre-existing networks of trust and reciprocity are more likely to prepare for, respond to, and recover more effectively from disasters. Notwithstanding its benefits, we argue that social capital cannot account for microprocesses of disaster behaviour such as groups that emerge in absence of any pre-existing ties and provide social support. We propose a new conceptualisation of aspects of community resilience based on the social identity approach in social psychology and grounded upon the principles of collective psychosocial resilience – the way that shared identification allows groups to emerge, coordinate, express solidarity and provide social support. We argue that our approach overcomes the limitations of social capital, because it can explain the processes of group behaviour in disasters, acknowledges people’s propensity to organise collectively, promotes bottom-up approaches to community resilience, recognises emergent communities, and suggests evidence-based recommendations for policy and practice. Finally, we propose an agenda for future research

    Bar imprints on the inner gas kinematics of M33

    Full text link
    We present measurements of the stellar and gaseous velocities in the central 5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the principal gaseous emission and stellar absorption lines were obtained along the major and minor axes and six other position angles. The observed radial velocities of the ionized gas along the photometric major axis of M33 remain flat at ~22 km s^{-1} all the way into the center, while the stellar velocities show a gradual rise from zero to 22 km s^{-1} over that same region. The central star cluster is at or very close to the dynamical center, with a velocity that is in accordance with M33's systemic velocity to within our uncertainties. Velocities on the minor axis are non-zero out to about 1' from the center in both the stars and gas. Together with the major axis velocities, they point at significant deviations from circular rotation. The most likely explanation for the bulk of the velocity patterns are streaming motions along a weak inner bar with a PA close to that of the minor axis, as suggested by previously published IR photometric images. The presence of bar imprints in M33 implies that all major Local Group galaxies are barred. The non-circular motions over the inner 200 pc make it difficult to constrain the shape of M33's inner dark matter halo profile. If the non-circular motions we find in this nearby Sc galaxy are present in other more distant late-type galaxies, they might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres
    • …
    corecore