173 research outputs found
Multifractal properties of elementary cellular automata in a discrete wavelet approach of MF-DFA
In 2005, Nagler and Claussen (Phys. Rev. E 71 (2005) 067103) investigated the
time series of the elementary cellular automata (ECA) for possible
(multi)fractal behavior. They eliminated the polynomial background at^b through
the direct fitting of the polynomial coefficients a and b. We here reconsider
their work eliminating the polynomial trend by means of the multifractal-based
detrended fluctuation analysis (MF-DFA) in which the wavelet multiresolution
property is employed to filter out the trend in a more speedy way than the
direct polynomial fitting and also with respect to the wavelet transform
modulus maxima (WTMM) procedure. In the algorithm, the discrete fast wavelet
transform is used to calculate the trend as a local feature that enters the
so-called details signal. We illustrate our result for three representative ECA
rules: 90, 105, and 150. We confirm their multifractal behavior and provide our
results for the scaling parametersComment: 8 pages, 5 figures, 21 reference
Multifractal properties of elementary cellular automata in a discrete wavelet approach of MF-DFA
In 2005, Nagler and Claussen (Phys. Rev. E 71 (2005) 067103) investigated the
time series of the elementary cellular automata (ECA) for possible
(multi)fractal behavior. They eliminated the polynomial background at^b through
the direct fitting of the polynomial coefficients a and b. We here reconsider
their work eliminating the polynomial trend by means of the multifractal-based
detrended fluctuation analysis (MF-DFA) in which the wavelet multiresolution
property is employed to filter out the trend in a more speedy way than the
direct polynomial fitting and also with respect to the wavelet transform
modulus maxima (WTMM) procedure. In the algorithm, the discrete fast wavelet
transform is used to calculate the trend as a local feature that enters the
so-called details signal. We illustrate our result for three representative ECA
rules: 90, 105, and 150. We confirm their multifractal behavior and provide our
results for the scaling parametersComment: 8 pages, 5 figures, 21 reference
Calculation of thermal parameters of SiGe microbolometers
The thermal parameters of a SiGe microbolometer were calculated using
numerical modeling. The calculated thermal conduction and thermal response time
are in good agreement with the values found experimentally and range between
2x10 and 7x10 W/K and 1.5 and 4.5 ms, respectively. High sensitivity
of microbolometer is achieved due to optimization of the thermal response time
and thermal conduction by fitting the geometry of supporting heat-removing legs
or by selection of a suitable material providing boundary thermal resistance
higher than 8x10 cmK/W at the SiGe interface.Comment: 11 pages, 6 figure
The Old Host-Galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational Wave Source
We present an analysis of the host-galaxy environment of Swope Supernova
Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a
gravitational wave source, GW170817. SSS17a occurred 1.9 kpc (in projection;
10.2") from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We
present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan
optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and
broad-band UV through IR photometry of NGC 4993. The spectrum and broad-band
spectral-energy distribution indicate that NGC 4993 has a stellar mass of log
(M/M_solar) = 10.49^{+0.08}_{-0.20} and star formation rate of 0.003
M_solar/yr, and the progenitor system of SSS17a likely had an age of >2.8 Gyr.
There is no counterpart at the position of SSS17a in the HST pre-trigger image,
indicating that the progenitor system had an absolute magnitude M_V > -5.8 mag.
We detect dust lanes extending out to almost the position of SSS17a and >100
likely globular clusters associated with NGC 4993. The offset of SSS17a is
similar to many short gamma-ray burst offsets, and its progenitor system was
likely bound to NGC 4993. The environment of SSS17a is consistent with an old
progenitor system such as a binary neutron star system.Comment: ApJL in pres
Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source
On 2017 August 17, the Laser Interferometer Gravitational-wave Observatory
(LIGO) and the Virgo interferometer detected gravitational waves emanating from
a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and
INTEGRAL telescopes detected a gamma-ray transient, GRB 170817A. 10.9 hours
after the gravitational wave trigger, we discovered a transient and fading
optical source, Swope Supernova Survey 2017a (SSS17a), coincident with
GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40
megaparsecs. The precise location of GW170817 provides an opportunity to probe
the nature of these cataclysmic events by combining electromagnetic and
gravitational-wave observations.Comment: 25 pages, 10 figures, 2 tables, published today in Scienc
Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger
On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as
the optical counterpart of the binary neutron star gravitational wave event
GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until
8.5 days after merger. Over the first hour of observations the ejecta rapidly
expanded and cooled. Applying blackbody fits to the spectra, we measure the
photosphere cooling from K to K,
and determine a photospheric velocity of roughly 30% of the speed of light. The
spectra of SSS17a begin displaying broad features after 1.46 days, and evolve
qualitatively over each subsequent day, with distinct blue (early-time) and red
(late-time) components. The late-time component is consistent with theoretical
models of r-process-enriched neutron star ejecta, whereas the blue component
requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc
Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis
On 2017 August 17, gravitational waves were detected from a binary neutron
star merger, GW170817, along with a coincident short gamma-ray burst,
GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a),
was subsequently identified as the counterpart of this event. We present
ultraviolet, optical and infrared light curves of SSS17a extending from 10.9
hours to 18 days post-merger. We constrain the radioactively-powered transient
resulting from the ejection of neutron-rich material. The fast rise of the
light curves, subsequent decay, and rapid color evolution are consistent with
multiple ejecta components of differing lanthanide abundance. The late-time
light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy
elements, demonstrating that neutron star mergers play a role in r-process
nucleosynthesis in the Universe.Comment: Accepted to Scienc
Evaluation of delivery options for second-stage events
Cesarean delivery in the second stage of labor is common, whereas the frequency of operative vaginal delivery has been declining. However, data comparing outcomes for attempted operative vaginal delivery in the second stage versus cesarean in the second stage are scant. Previous studies that examine operative vaginal delivery have compared it to a baseline risk of complications from a spontaneous vaginal delivery and cesarean delivery. However, when a woman has a need for intervention in the second stage, spontaneous vaginal delivery is not an option she or the provider can choose. Thus, the appropriate clinical comparison is cesarean versus operative vaginal delivery
Focused Ion Beam Fabrication
Contains reports on eight research projects.DARPA/Naval Electronics Systems Command (Contract MDA 903-85-C-0215)DARPA/U.S. Army Research Office (Contract DAAL03-88-K-0108)U.S. Army Research Office (Contract DAAL03-87-K-0126)Charles Stark Draper LaboratoryInternational Business Machines Corporation - Research Division, General Technologies DivisionU.S. Air ForceDARP
- …