1,344 research outputs found

    The Utilization of Dissolved Free Amino Acids by Estuarine Microorganisms

    Get PDF
    The importance of bacteria in the cycling of carbon in the Pamlico River estuary was studied by measuring the rates of uptake of organic compounds. Our methods allowed analysis with the Michaelis-Menten kinetics equations, and both the rates of uptake of dissolved free amino acids (DFAA) and glucose as well as the percentage of carbon subsequently respired as CO2 were determined. In addition, the concentrations of the amino acids in the water were determined using ion exchange chromatography. Other tests included measurements of primary productivity and of the effects of the other amino acids in the water upon the uptake of one amino acid. (...

    Large Magnetic Susceptibility Anisotropy of Metallic Carbon Nanotubes

    Full text link
    Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This large anisotropy is consistent with our calculations and can be understood in terms of large orbital paramagnetism of electrons in metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in a parallel field. We also compare our values with previous work for semiconducting nanotubes, which confirm a break from the prediction that the magnetic susceptibility anisotropy increases linearly with the diameter.Comment: 4 pages, 4 figure

    Long‐Term Responses Of The Kuparuk River Ecosystem To Phosphorus Fertilization

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117218/1/ecy2004854939.pd

    Elevated acetate concentrations in the rhizosphere of Spartina alterniflora and potential influences on sulfate reduction

    Get PDF
    Acetate is important in anaerobic metabolism of non-vegetated sediments but its role in salt marsh soils was not investigated thoroughly. Acetate concentrations, oxidation (C-14) and SO4(2-) reduction (S-35) were measured in S. alterniflora soils in NH and MA. Pore water from cores contained greater than 0.1 mM acetate and in some instances greater than 1.0 mM. Non-destructive samples contained less than 0.01 mM. Acetate was associated with roots and concentrations were highest during vegetative growth and varied with changes in plant physiology. Acetate turnover was very low whether whole core or slurry incubations were used. Radiotracers injected directly into soils yielded rates of SO4(2-) reduction and acetate oxidation not significantly different from core incubation techniques. Regardless of incubation method, acetate oxidation did not account for a significant percentage of SO4(2-) reduction. These results differ markedly from data for non-vegetated coastal sediments where acetate levels are low, oxidation rate constants are high and acetate oxidation rates greatly exceed rates of SO4(2-) reduction. The discrepancy between rates of acetate oxidation and SO4(2-) reduction in marsh soils may be due either to the utilization of substrates other than acetate by SO4(2-) reducers or artifacts associated with measurements of organic utilization by rhizosphere bacteria

    Role of Boreal Vegetation in Controlling Ecosystem Processes and Feedbacks to Climate

    Get PDF
    In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary

    Climate‐related variations in mixing dynamics in an Alaskan arctic lake

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109805/1/lno2009546part22401.pd
    corecore